Skip to main content
Genetics logoLink to Genetics
. 1999 Mar;151(3):929–934. doi: 10.1093/genetics/151.3.929

Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli.

M Viswanathan 1, A Lanjuin 1, S T Lovett 1
PMCID: PMC1460521  PMID: 10049912

Abstract

There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3' DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3' DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.

Full Text

The Full Text of this article is available as a PDF (101.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. L., Mitchell R. S., Morrical S. W., Neuendorf S. K., Schutte B. C., Cox M. M. recA protein-promoted ATP hydrolysis occurs throughout recA nucleoprotein filaments. J Biol Chem. 1987 Mar 25;262(9):4011–4016. [PubMed] [Google Scholar]
  5. Chase J. W., Rabin B. A., Murphy J. B., Stone K. L., Williams K. R. Escherichia coli exonuclease VII. Cloning and sequencing of the gene encoding the large subunit (xseA). J Biol Chem. 1986 Nov 15;261(32):14929–14935. [PubMed] [Google Scholar]
  6. Chung C. T., Niemela S. L., Miller R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. doi: 10.1073/pnas.86.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper D. L., Lahue R. S., Modrich P. Methyl-directed mismatch repair is bidirectional. J Biol Chem. 1993 Jun 5;268(16):11823–11829. [PubMed] [Google Scholar]
  8. Deutscher M. P., Marlor C. W. Purification and characterization of Escherichia coli RNase T. J Biol Chem. 1985 Jun 10;260(11):7067–7071. [PubMed] [Google Scholar]
  9. Deutscher M. P., Marlor C. W., Zaniewski R. RNase T is responsible for the end-turnover of tRNA in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6427–6430. doi: 10.1073/pnas.82.19.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  12. Grilley M., Griffith J., Modrich P. Bidirectional excision in methyl-directed mismatch repair. J Biol Chem. 1993 Jun 5;268(16):11830–11837. [PubMed] [Google Scholar]
  13. Huang S., Deutscher M. P. Sequence and transcriptional analysis of the Escherichia coli rnt gene encoding RNase T. J Biol Chem. 1992 Dec 15;267(35):25609–25613. [PubMed] [Google Scholar]
  14. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LEHMAN I. R., NUSSBAUM A. L. THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI. V. ON THE SPECIFICITY OF EXONUCLEASE I (PHOSPHODIESTERASE). J Biol Chem. 1964 Aug;239:2628–2636. [PubMed] [Google Scholar]
  16. Li Z., Deutscher M. P. The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6883–6886. doi: 10.1073/pnas.92.15.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lovett S. T., Kolodner R. D. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2627–2631. doi: 10.1073/pnas.86.8.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lovett S. T., Kolodner R. D. Nucleotide sequence of the Escherichia coli recJ chromosomal region and construction of recJ-overexpression plasmids. J Bacteriol. 1991 Jan;173(1):353–364. doi: 10.1128/jb.173.1.353-364.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miesel L., Roth J. R. Evidence that SbcB and RecF pathway functions contribute to RecBCD-dependent transductional recombination. J Bacteriol. 1996 Jun;178(11):3146–3155. doi: 10.1128/jb.178.11.3146-3155.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Phillips G. J., Kushner S. R. Determination of the nucleotide sequence for the exonuclease I structural gene (sbcB) of Escherichia coli K12. J Biol Chem. 1987 Jan 5;262(1):455–459. [PubMed] [Google Scholar]
  21. Prasher D. C., Conarro L., Kushner S. R. Amplification and purification of exonuclease I from Escherichia coli K12. J Biol Chem. 1983 May 25;258(10):6340–6343. [PubMed] [Google Scholar]
  22. Razavy H., Szigety S. K., Rosenberg S. M. Evidence for both 3' and 5' single-strand DNA ends in intermediates in chi-stimulated recombination in vivo. Genetics. 1996 Feb;142(2):333–339. doi: 10.1093/genetics/142.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reuven N. B., Koonin E. V., Rudd K. E., Deutscher M. P. The gene for the longest known Escherichia coli protein is a member of helicase superfamily II. J Bacteriol. 1995 Oct;177(19):5393–5400. doi: 10.1128/jb.177.19.5393-5400.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tuerk C., MacDougal S., Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6988–6992. doi: 10.1073/pnas.89.15.6988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Houten B. Nucleotide excision repair in Escherichia coli. Microbiol Rev. 1990 Mar;54(1):18–51. doi: 10.1128/mr.54.1.18-51.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Viswanathan M., Dower K. W., Lovett S. T. Identification of a potent DNase activity associated with RNase T of Escherichia coli. J Biol Chem. 1998 Dec 25;273(52):35126–35131. doi: 10.1074/jbc.273.52.35126. [DOI] [PubMed] [Google Scholar]
  27. Viswanathan M., Lovett S. T. Single-strand DNA-specific exonucleases in Escherichia coli. Roles in repair and mutation avoidance. Genetics. 1998 May;149(1):7–16. doi: 10.1093/genetics/149.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willetts N. S., Clark A. J., Low B. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J Bacteriol. 1969 Jan;97(1):244–249. doi: 10.1128/jb.97.1.244-249.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES