Skip to main content
Genetics logoLink to Genetics
. 1999 Mar;151(3):935–944. doi: 10.1093/genetics/151.3.935

Hmo1p, a high mobility group 1/2 homolog, genetically and physically interacts with the yeast FKBP12 prolyl isomerase.

K J Dolinski 1, J Heitman 1
PMCID: PMC1460526  PMID: 10049913

Abstract

The immunosuppressive drugs FK506 and rapamycin bind to the cellular protein FKBP12, and the resulting FKBP12-drug complexes inhibit signal transduction. FKBP12 is a ubiquitous, highly conserved, abundant enzyme that catalyzes a rate-limiting step in protein folding: peptidyl-prolyl cis-trans isomerization. However, FKBP12 is dispensible for viability in both yeast and mice, and therefore does not play an essential role in protein folding. The functions of FKBP12 may involve interactions with a number of partner proteins, and a few proteins that interact with FKBP12 in the absence of FK506 or rapamycin have been identified, including the ryanodine receptor, aspartokinase, and the type II TGF-beta receptor; however, none of these are conserved from yeast to humans. To identify other targets and functions of FKBP12, we have screened for mutations that are synthetically lethal with an FKBP12 mutation in yeast. We find that mutations in HMO1, which encodes a high mobility group 1/2 homolog, are synthetically lethal with mutations in the yeast FPR1 gene encoding FKBP12. Deltahmo1 and Deltafpr1 mutants share two phenotypes: an increased rate of plasmid loss and slow growth. In addition, Hmo1p and FKBP12 physically interact in FKBP12 affinity chromatography experiments, and two-hybrid experiments suggest that FKBP12 regulates Hmo1p-Hmo1p or Hmo1p-DNA interactions. Because HMG1/2 proteins are conserved from yeast to humans, our findings suggest that FKBP12-HMG1/2 interactions could represent the first conserved function of FKBP12 other than mediating FK506 and rapamycin actions.

Full Text

The Full Text of this article is available as a PDF (266.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. doi: 10.1534/genetics.112.541.test. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alarcón C. M., Heitman J. FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Oct;17(10):5968–5975. doi: 10.1128/mcb.17.10.5968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassing C. H., Shou W., Muir S., Heitman J., Matzuk M. M., Wang X. F. FKBP12 is not required for the modulation of transforming growth factor beta receptor I signaling activity in embryonic fibroblasts and thymocytes. Cell Growth Differ. 1998 Mar;9(3):223–228. [PubMed] [Google Scholar]
  4. Bender A., Pringle J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Mar;11(3):1295–1305. doi: 10.1128/mcb.11.3.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brillantes A. B., Ondrias K., Scott A., Kobrinsky E., Ondriasová E., Moschella M. C., Jayaraman T., Landers M., Ehrlich B. E., Marks A. R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994 May 20;77(4):513–523. doi: 10.1016/0092-8674(94)90214-3. [DOI] [PubMed] [Google Scholar]
  6. Cameron A. M., Steiner J. P., Sabatini D. M., Kaplin A. I., Walensky L. D., Snyder S. H. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1784–1788. doi: 10.1073/pnas.92.5.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cardenas M. E., Hemenway C., Muir R. S., Ye R., Fiorentino D., Heitman J. Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J. 1994 Dec 15;13(24):5944–5957. doi: 10.1002/j.1460-2075.1994.tb06940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chambraud B., Radanyi C., Camonis J. H., Shazand K., Rajkowski K., Baulieu E. E. FAP48, a new protein that forms specific complexes with both immunophilins FKBP59 and FKBP12. Prevention by the immunosuppressant drugs FK506 and rapamycin. J Biol Chem. 1996 Dec 20;271(51):32923–32929. doi: 10.1074/jbc.271.51.32923. [DOI] [PubMed] [Google Scholar]
  9. Dolinski K., Scholz C., Muir R. S., Rospert S., Schmid F. X., Cardenas M. E., Heitman J. Functions of FKBP12 and mitochondrial cyclophilin active site residues in vitro and in vivo in Saccharomyces cerevisiae. Mol Biol Cell. 1997 Nov;8(11):2267–2280. doi: 10.1091/mbc.8.11.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  11. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993 Nov 19;75(4):805–816. doi: 10.1016/0092-8674(93)90499-g. [DOI] [PubMed] [Google Scholar]
  12. Heitman J., Movva N. R., Hall M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991 Aug 23;253(5022):905–909. doi: 10.1126/science.1715094. [DOI] [PubMed] [Google Scholar]
  13. Heitman J., Movva N. R., Hiestand P. C., Hall M. N. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948–1952. doi: 10.1073/pnas.88.5.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hemenway C. S., Heitman J. Immunosuppressant target protein FKBP12 is required for P-glycoprotein function in yeast. J Biol Chem. 1996 Aug 2;271(31):18527–18534. doi: 10.1074/jbc.271.31.18527. [DOI] [PubMed] [Google Scholar]
  15. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jayaraman T., Brillantes A. M., Timerman A. P., Fleischer S., Erdjument-Bromage H., Tempst P., Marks A. R. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem. 1992 May 15;267(14):9474–9477. [PubMed] [Google Scholar]
  17. Koltin Y., Faucette L., Bergsma D. J., Levy M. A., Cafferkey R., Koser P. L., Johnson R. K., Livi G. P. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol. 1991 Mar;11(3):1718–1723. doi: 10.1128/mcb.11.3.1718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koshland D., Kent J. C., Hartwell L. H. Genetic analysis of the mitotic transmission of minichromosomes. Cell. 1985 Feb;40(2):393–403. doi: 10.1016/0092-8674(85)90153-9. [DOI] [PubMed] [Google Scholar]
  19. Landsman D., Bustin M. A signature for the HMG-1 box DNA-binding proteins. Bioessays. 1993 Aug;15(8):539–546. doi: 10.1002/bies.950150807. [DOI] [PubMed] [Google Scholar]
  20. Lorenz M. C., Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem. 1995 Nov 17;270(46):27531–27537. doi: 10.1074/jbc.270.46.27531. [DOI] [PubMed] [Google Scholar]
  21. Lorenz M. C., Muir R. S., Lim E., McElver J., Weber S. C., Heitman J. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene. 1995 May 26;158(1):113–117. doi: 10.1016/0378-1119(95)00144-u. [DOI] [PubMed] [Google Scholar]
  22. Lu J., Kobayashi R., Brill S. J. Characterization of a high mobility group 1/2 homolog in yeast. J Biol Chem. 1996 Dec 27;271(52):33678–33685. doi: 10.1074/jbc.271.52.33678. [DOI] [PubMed] [Google Scholar]
  23. Pernambuco M. B., Winderickx J., Crauwels M., Griffioen G., Mager W. H., Thevelein J. M. Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology. 1996 Jul;142(Pt 7):1775–1782. doi: 10.1099/13500872-142-7-1775. [DOI] [PubMed] [Google Scholar]
  24. Rose M. D., Broach J. R. Cloning genes by complementation in yeast. Methods Enzymol. 1991;194:195–230. doi: 10.1016/0076-6879(91)94017-7. [DOI] [PubMed] [Google Scholar]
  25. Rotonda J., Burbaum J. J., Chan H. K., Marcy A. I., Becker J. W. Improved calcineurin inhibition by yeast FKBP12-drug complexes. Crystallographic and functional analysis. J Biol Chem. 1993 Apr 15;268(11):7607–7609. doi: 10.2210/pdb1yat/pdb. [DOI] [PubMed] [Google Scholar]
  26. Sabatini D. M., Erdjument-Bromage H., Lui M., Tempst P., Snyder S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994 Jul 15;78(1):35–43. doi: 10.1016/0092-8674(94)90570-3. [DOI] [PubMed] [Google Scholar]
  27. Sabers C. J., Martin M. M., Brunn G. J., Williams J. M., Dumont F. J., Wiederrecht G., Abraham R. T. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995 Jan 13;270(2):815–822. doi: 10.1074/jbc.270.2.815. [DOI] [PubMed] [Google Scholar]
  28. Sabers C. J., Martin M. M., Brunn G. J., Williams J. M., Dumont F. J., Wiederrecht G., Abraham R. T. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995 Jan 13;270(2):815–822. doi: 10.1074/jbc.270.2.815. [DOI] [PubMed] [Google Scholar]
  29. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  30. Shou W., Aghdasi B., Armstrong D. L., Guo Q., Bao S., Charng M. J., Mathews L. M., Schneider M. D., Hamilton S. L., Matzuk M. M. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature. 1998 Jan 29;391(6666):489–492. doi: 10.1038/35146. [DOI] [PubMed] [Google Scholar]
  31. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Timerman A. P., Ogunbumni E., Freund E., Wiederrecht G., Marks A. R., Fleischer S. The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Nov 5;268(31):22992–22999. [PubMed] [Google Scholar]
  33. Tremethick D. J., Molloy P. L. Effects of high mobility group proteins 1 and 2 on initiation and elongation of specific transcription by RNA polymerase II in vitro. Nucleic Acids Res. 1988 Dec 9;16(23):11107–11123. doi: 10.1093/nar/16.23.11107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tremethick D. J., Molloy P. L. High mobility group proteins 1 and 2 stimulate transcription in vitro by RNA polymerases II and III. J Biol Chem. 1986 May 25;261(15):6986–6992. [PubMed] [Google Scholar]
  35. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  36. Wang T., Li B. Y., Danielson P. D., Shah P. C., Rockwell S., Lechleider R. J., Martin J., Manganaro T., Donahoe P. K. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell. 1996 Aug 9;86(3):435–444. doi: 10.1016/s0092-8674(00)80116-6. [DOI] [PubMed] [Google Scholar]
  37. Wang T., Li B. Y., Danielson P. D., Shah P. C., Rockwell S., Lechleider R. J., Martin J., Manganaro T., Donahoe P. K. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell. 1996 Aug 9;86(3):435–444. doi: 10.1016/s0092-8674(00)80116-6. [DOI] [PubMed] [Google Scholar]
  38. Wiederrecht G., Brizuela L., Elliston K., Sigal N. H., Siekierka J. J. FKB1 encodes a nonessential FK 506-binding protein in Saccharomyces cerevisiae and contains regions suggesting homology to the cyclophilins. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1029–1033. doi: 10.1073/pnas.88.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yang W. M., Inouye C. J., Seto E. Cyclophilin A and FKBP12 interact with YY1 and alter its transcriptional activity. J Biol Chem. 1995 Jun 23;270(25):15187–15193. doi: 10.1074/jbc.270.25.15187. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES