Skip to main content
Genetics logoLink to Genetics
. 1999 May;152(1):5–13. doi: 10.1093/genetics/152.1.5

Tandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC.

C J Saveson 1, S T Lovett 1
PMCID: PMC1460591  PMID: 10224240

Abstract

DnaB is the helicase associated with the DNA polymerase III replication fork in Escherichia coli. Previously we observed that the dnaB107(ts) mutation, at its permissive temperature, greatly stimulated deletion events at chromosomal tandem repeats. This stimulation required recA, which suggests a recombinational mechanism. In this article we examine the genetic dependence of recombination stimulated by the dnaB107 mutation. Gap repair genes recF, recO, and recR were not required. Mutations in recB, required for double-strand break repair, and in ruvC, the Holliday junction resolvase gene, were synthetically lethal with dnaB107, causing enhanced temperature sensitivity. The hyperdeletion phenotype of dnaB107 was semidominant, and in dnaB107/dnaB+ heterozygotes recB was partially required for enhanced deletion, whereas ruvC was not. We believe that dnaB107 causes the stalling of replication forks, which may become broken and require repair. Misalignment of repeated sequences during RecBCD-mediated repair may account for most, but not all, of deletion stimulated by dnaB107. To our surprise, the radC gene, like recA, was required for virtually all recombination stimulated by dnaB107. The biochemical function of RadC is unknown, but is reported to be required for growth-medium-dependent repair of DNA strand breaks. Our results suggest that RadC functions specifically in recombinational repair that is associated with the replication fork.

Full Text

The Full Text of this article is available as a PDF (166.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K., Kornberg A. Mechanism of dnaB protein action. II. ATP hydrolysis by dnaB protein dependent on single- or double-stranded DNA. J Biol Chem. 1981 May 25;256(10):5253–5259. [PubMed] [Google Scholar]
  2. Bierne H., Michel B. When replication forks stop. Mol Microbiol. 1994 Jul;13(1):17–23. doi: 10.1111/j.1365-2958.1994.tb00398.x. [DOI] [PubMed] [Google Scholar]
  3. Clark A. J., Sandler S. J. Homologous genetic recombination: the pieces begin to fall into place. Crit Rev Microbiol. 1994;20(2):125–142. doi: 10.3109/10408419409113552. [DOI] [PubMed] [Google Scholar]
  4. Courcelle J., Carswell-Crumpton C., Hanawalt P. C. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3714–3719. doi: 10.1073/pnas.94.8.3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Csonka L. N., Clark A. J. Deletions generated by the transposon Tn10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics. 1979 Oct;93(2):321–343. doi: 10.1093/genetics/93.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felzenszwalb I., Sargentini N. J., Smith K. C. Characterization of a new radiation-sensitive mutant, Escherichia coli K-12 radC102. Radiat Res. 1984 Mar;97(3):615–625. [PubMed] [Google Scholar]
  8. Felzenszwalb I., Sargentini N. J., Smith K. C. Escherichia coli radC is deficient in the recA-dependent repair of X-ray-induced DNA strand breaks. Radiat Res. 1986 May;106(2):166–170. [PubMed] [Google Scholar]
  9. Gillen J. R., Willis D. K., Clark A. J. Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J Bacteriol. 1981 Jan;145(1):521–532. doi: 10.1128/jb.145.1.521-532.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horiuchi T., Fujimura Y. Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate. J Bacteriol. 1995 Feb;177(3):783–791. doi: 10.1128/jb.177.3.783-791.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khatri G. S., MacAllister T., Sista P. R., Bastia D. The replication terminator protein of E. coli is a DNA sequence-specific contra-helicase. Cell. 1989 Nov 17;59(4):667–674. doi: 10.1016/0092-8674(89)90012-3. [DOI] [PubMed] [Google Scholar]
  12. Kim S., Dallmann H. G., McHenry C. S., Marians K. J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell. 1996 Feb 23;84(4):643–650. doi: 10.1016/s0092-8674(00)81039-9. [DOI] [PubMed] [Google Scholar]
  13. Kobori J. A., Kornberg A. The Escherichia coli dnaC gene product. III. Properties of the dnaB-dnaC protein complex. J Biol Chem. 1982 Nov 25;257(22):13770–13775. [PubMed] [Google Scholar]
  14. Kolodner R., Fishel R. A., Howard M. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol. 1985 Sep;163(3):1060–1066. doi: 10.1128/jb.163.3.1060-1066.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuzminov A. Instability of inhibited replication forks in E. coli. Bioessays. 1995 Aug;17(8):733–741. doi: 10.1002/bies.950170810. [DOI] [PubMed] [Google Scholar]
  16. Lanka E., Geschke B., Schuster H. Escherichia coli dnaB mutant defective in DNA initiation: isolation and properties of the dnaB protein. Proc Natl Acad Sci U S A. 1978 Feb;75(2):799–803. doi: 10.1073/pnas.75.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lark K. G., Wechsler J. A. DNA replication in dnaB mutants of Escherichia coli: gene product interaction and synthesis of 4 S pieces. J Mol Biol. 1975 Feb 15;92(1):145–163. doi: 10.1016/0022-2836(75)90095-9. [DOI] [PubMed] [Google Scholar]
  18. LeBowitz J. H., McMacken R. The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem. 1986 Apr 5;261(10):4738–4748. [PubMed] [Google Scholar]
  19. Lee E. H., Kornberg A., Hidaka M., Kobayashi T., Horiuchi T. Escherichia coli replication termination protein impedes the action of helicases. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9104–9108. doi: 10.1073/pnas.86.23.9104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lloyd R. G., Buckman C., Benson F. E. Genetic analysis of conjugational recombination in Escherichia coli K12 strains deficient in RecBCD enzyme. J Gen Microbiol. 1987 Sep;133(9):2531–2538. doi: 10.1099/00221287-133-9-2531. [DOI] [PubMed] [Google Scholar]
  21. Louarn J. M., Louarn J., François V., Patte J. Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome. J Bacteriol. 1991 Aug;173(16):5097–5104. doi: 10.1128/jb.173.16.5097-5104.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovett S. T., Drapkin P. T., Sutera V. A., Jr, Gluckman-Peskind T. J. A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics. 1993 Nov;135(3):631–642. doi: 10.1093/genetics/135.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luisi-DeLuca C., Lovett S. T., Kolodner R. D. Genetic and physical analysis of plasmid recombination in recB recC sbcB and recB recC sbcA Escherichia coli K-12 mutants. Genetics. 1989 Jun;122(2):269–278. doi: 10.1093/genetics/122.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mahdi A. A., Lloyd R. G. Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol Gen Genet. 1989 Apr;216(2-3):503–510. doi: 10.1007/BF00334397. [DOI] [PubMed] [Google Scholar]
  25. Marszalek J., Kaguni J. M. DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J Biol Chem. 1994 Feb 18;269(7):4883–4890. [PubMed] [Google Scholar]
  26. Michel B., Ehrlich S. D., Uzest M. DNA double-strand breaks caused by replication arrest. EMBO J. 1997 Jan 15;16(2):430–438. doi: 10.1093/emboj/16.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Picksley S. M., Attfield P. V., Lloyd R. G. Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet. 1984;195(1-2):267–274. doi: 10.1007/BF00332758. [DOI] [PubMed] [Google Scholar]
  28. Saluja D., Godson G. N. Biochemical characterization of Escherichia coli temperature-sensitive dnaB mutants dnaB8, dnaB252, dnaB70, dnaB43, and dnaB454. J Bacteriol. 1995 Feb;177(4):1104–1111. doi: 10.1128/jb.177.4.1104-1111.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sargentini N. J., Smith K. C. Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. Radiat Res. 1986 Jul;107(1):58–72. [PubMed] [Google Scholar]
  30. Saveson C. J., Lovett S. T. Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics. 1997 Jun;146(2):457–470. doi: 10.1093/genetics/146.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shan Q., Bork J. M., Webb B. L., Inman R. B., Cox M. M. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol. 1997 Feb 7;265(5):519–540. doi: 10.1006/jmbi.1996.0748. [DOI] [PubMed] [Google Scholar]
  32. Shurvinton C. E., Lloyd R. G., Benson F. E., Attfield P. V. Genetic analysis and molecular cloning of the Escherichia coli ruv gene. Mol Gen Genet. 1984;194(1-2):322–329. doi: 10.1007/BF00383535. [DOI] [PubMed] [Google Scholar]
  33. Smith K. C., Wang T. V., Sharma R. C. recA-dependent DNA repair in UV-irradiated Escherichia coli. J Photochem Photobiol B. 1987 Sep;1(1):1–11. doi: 10.1016/1011-1344(87)80002-7. [DOI] [PubMed] [Google Scholar]
  34. Tougu K., Marians K. J. The interaction between helicase and primase sets the replication fork clock. J Biol Chem. 1996 Aug 30;271(35):21398–21405. doi: 10.1074/jbc.271.35.21398. [DOI] [PubMed] [Google Scholar]
  35. Umezu K., Chi N. W., Kolodner R. D. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3875–3879. doi: 10.1073/pnas.90.9.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Versalovic J., Lupski J. R. Missense mutations in the 3' end of the Escherichia coli dnaG gene do not abolish primase activity but do confer the chromosome-segregation-defective (par) phenotype. Microbiology. 1997 Feb;143(Pt 2):585–594. doi: 10.1099/00221287-143-2-585. [DOI] [PubMed] [Google Scholar]
  37. Webb B. L., Cox M. M., Inman R. B. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J Biol Chem. 1995 Dec 29;270(52):31397–31404. doi: 10.1074/jbc.270.52.31397. [DOI] [PubMed] [Google Scholar]
  38. Wickner S., Hurwitz J. Interaction of Escherichia coli dnaB and dnaC(D) gene products in vitro. Proc Natl Acad Sci U S A. 1975 Mar;72(3):921–925. doi: 10.1073/pnas.72.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wierdl M., Greene C. N., Datta A., Jinks-Robertson S., Petes T. D. Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics. 1996 Jun;143(2):713–721. doi: 10.1093/genetics/143.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Willetts N. S., Clark A. J., Low B. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J Bacteriol. 1969 Jan;97(1):244–249. doi: 10.1128/jb.97.1.244-249.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wong A., Kean L., Maurer R. Sequence of the dnaB gene of Salmonella typhimurium. J Bacteriol. 1988 Jun;170(6):2668–2675. doi: 10.1128/jb.170.6.2668-2675.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES