Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Aug 1;24(15):3100–3106. doi: 10.1093/nar/24.15.3100

Role of TATA box sequence and orientation in determining RNA polymerase II/III transcription specificity.

Y Wang 1, R C Jensen 1, W E Stumph 1
PMCID: PMC146060  PMID: 8760900

Abstract

Work from a number of laboratories has indicated that the TATA box sequence can act as a basal promoter element not only for RNA polymerase II (RNAP II) transcription, but also for transcription by RNA polymerase III (RNAP III). We previously reported that, in the absence of other cis-acting elements, the canonical TATA sequence TATAAAAA specifically supported transcription by RNAP II in an unfractionated Drosophila nuclear extract, whereas the sequence TTTTTATA (the same sequence in reverse orientation) directed RNAP III transcription. We have now examined a variety of other TATA box sequences with regard to RNA polymerase selectivity and their ability to support RNAP III transcription. The results have allowed us to rank these TATA box sequences with respect to their relative strengths as RNAP III promoter elements in unfractionated Drosophila extracts. Further, the data indicate that T residues at positions 2 and 4 of the TATA box appear to be important determinants of RNAP III selectivity in this system, whereas A residues at these positions favor RNAP II transcription. Finally, the data suggest that transcription factors TFIID and TFIIIB, although both capable of binding a variety of TATA elements, have distinct sequence preferences for recognizing the TATA box and possibly the surrounding DNA.

Full Text

The Full Text of this article is available as a PDF (166.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasland R., Stewart A. F., Gibson T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci. 1996 Mar;21(3):87–88. [PubMed] [Google Scholar]
  2. Beckmann H., Chen J. L., O'Brien T., Tjian R. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science. 1995 Dec 1;270(5241):1506–1509. doi: 10.1126/science.270.5241.1506. [DOI] [PubMed] [Google Scholar]
  3. Bentley D. L., Brown W. L., Groudine M. Accurate, TATA box-dependent polymerase III transcription from promoters of the c-myc gene in injected Xenopus oocytes. Genes Dev. 1989 Aug;3(8):1179–1189. doi: 10.1101/gad.3.8.1179. [DOI] [PubMed] [Google Scholar]
  4. Buratowski S., Zhou H. A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell. 1992 Oct 16;71(2):221–230. doi: 10.1016/0092-8674(92)90351-c. [DOI] [PubMed] [Google Scholar]
  5. Burke T. W., Kadonaga J. T. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 1996 Mar 15;10(6):711–724. doi: 10.1101/gad.10.6.711. [DOI] [PubMed] [Google Scholar]
  6. Chung J., Sussman D. J., Zeller R., Leder P. The c-myc gene encodes superimposed RNA polymerase II and III promoters. Cell. 1987 Dec 24;51(6):1001–1008. doi: 10.1016/0092-8674(87)90586-1. [DOI] [PubMed] [Google Scholar]
  7. Colbert T., Hahn S. A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev. 1992 Oct;6(10):1940–1949. doi: 10.1101/gad.6.10.1940. [DOI] [PubMed] [Google Scholar]
  8. Das G., Henning D., Reddy R. Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. J Biol Chem. 1987 Jan 25;262(3):1187–1193. [PubMed] [Google Scholar]
  9. Geiger J. H., Hahn S., Lee S., Sigler P. B. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science. 1996 May 10;272(5263):830–836. doi: 10.1126/science.272.5263.830. [DOI] [PubMed] [Google Scholar]
  10. Gerlach V. L., Whitehall S. K., Geiduschek E. P., Brow D. A. TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts. Mol Cell Biol. 1995 Mar;15(3):1455–1466. doi: 10.1128/mcb.15.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heard D. J., Kiss T., Filipowicz W. Both Arabidopsis TATA binding protein (TBP) isoforms are functionally identical in RNA polymerase II and III transcription in plant cells: evidence for gene-specific changes in DNA binding specificity of TBP. EMBO J. 1993 Sep;12(9):3519–3528. doi: 10.1002/j.1460-2075.1993.tb06026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hernandez N. TBP, a universal eukaryotic transcription factor? Genes Dev. 1993 Jul;7(7B):1291–1308. doi: 10.1101/gad.7.7b.1291. [DOI] [PubMed] [Google Scholar]
  13. Huang W., Wong J. M., Bateman E. TATA elements direct bi-directional transcription by RNA polymerases II and III. Nucleic Acids Res. 1996 Mar 15;24(6):1158–1163. doi: 10.1093/nar/24.6.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huet J., Conesa C., Manaud N., Chaussivert N., Sentenac A. Interactions between yeast TFIIIB components. Nucleic Acids Res. 1994 Jun 25;22(12):2282–2288. doi: 10.1093/nar/22.12.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joazeiro C. A., Kassavetis G. A., Geiduschek E. P. Identical components of yeast transcription factor IIIB are required and sufficient for transcription of TATA box-containing and TATA-less genes. Mol Cell Biol. 1994 Apr;14(4):2798–2808. doi: 10.1128/mcb.14.4.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kamakaka R. T., Kadonaga J. T. The soluble nuclear fraction, a highly efficient transcription extract from Drosophila embryos. Methods Cell Biol. 1994;44:225–235. doi: 10.1016/s0091-679x(08)60916-4. [DOI] [PubMed] [Google Scholar]
  17. Kamakaka R. T., Tyree C. M., Kadonaga J. T. Accurate and efficient RNA polymerase II transcription with a soluble nuclear fraction derived from Drosophila embryos. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1024–1028. doi: 10.1073/pnas.88.3.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee D. K., DeJong J., Hashimoto S., Horikoshi M., Roeder R. G. TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol Cell Biol. 1992 Nov;12(11):5189–5196. doi: 10.1128/mcb.12.11.5189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee S., Hahn S. Model for binding of transcription factor TFIIB to the TBP-DNA complex. Nature. 1995 Aug 17;376(6541):609–612. doi: 10.1038/376609a0. [DOI] [PubMed] [Google Scholar]
  20. López-De-León A., Librizzi M., Puglia K., Willis I. M. PCF4 encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell. 1992 Oct 16;71(2):211–220. doi: 10.1016/0092-8674(92)90350-l. [DOI] [PubMed] [Google Scholar]
  21. McKune K., Woychik N. A. Functional substitution of an essential yeast RNA polymerase subunit by a highly conserved mammalian counterpart. Mol Cell Biol. 1994 Jun;14(6):4155–4159. doi: 10.1128/mcb.14.6.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mitchell M. T., Benfield P. A. TATA box-mediated in vitro transcription by RNA polymerase III. Evidence for TATA-binding protein in a polymerase III type complex. J Biol Chem. 1993 Jan 15;268(2):1141–1150. [PubMed] [Google Scholar]
  23. Mitchell M. T., Hobson G. M., Benfield P. A. TATA box-mediated polymerase III transcription in vitro. J Biol Chem. 1992 Jan 25;267(3):1995–2005. [PubMed] [Google Scholar]
  24. Nikolov D. B., Chen H., Halay E. D., Usheva A. A., Hisatake K., Lee D. K., Roeder R. G., Burley S. K. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature. 1995 Sep 14;377(6545):119–128. doi: 10.1038/377119a0. [DOI] [PubMed] [Google Scholar]
  25. Sharp P. A. TATA-binding protein is a classless factor. Cell. 1992 Mar 6;68(5):819–821. doi: 10.1016/0092-8674(92)90023-6. [DOI] [PubMed] [Google Scholar]
  26. Sklar V. E., Jaehning J. A., Gage L. P., Roeder R. G. Purification and subunit structure of deoxyribonucleic acid-dependent ribonucleic acid polymerase III from the posterior silk gland of Bombyx mori. J Biol Chem. 1976 Jun 25;251(12):3794–3800. [PubMed] [Google Scholar]
  27. Steinberg T. H., Mathews D. E., Durbin R. D., Burgess R. R. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem. 1990 Jan 5;265(1):499–505. [PubMed] [Google Scholar]
  28. Tan S., Hunziker Y., Sargent D. F., Richmond T. J. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature. 1996 May 9;381(6578):127–151. doi: 10.1038/381127a0. [DOI] [PubMed] [Google Scholar]
  29. Wang Y., Stumph W. E. RNA polymerase II/III transcription specificity determined by TATA box orientation. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8606–8610. doi: 10.1073/pnas.92.19.8606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang Z., Roeder R. G. Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7026–7030. doi: 10.1073/pnas.92.15.7026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Whitehall S. K., Kassavetis G. A., Geiduschek E. P. The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev. 1995 Dec 1;9(23):2974–2985. doi: 10.1101/gad.9.23.2974. [DOI] [PubMed] [Google Scholar]
  32. Wobbe C. R., Struhl K. Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol. 1990 Aug;10(8):3859–3867. doi: 10.1128/mcb.10.8.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zamrod Z., Tyree C. M., Song Y., Stumph W. E. In vitro transcription of a Drosophila U1 small nuclear RNA gene requires TATA box-binding protein and two proximal cis-acting elements with stringent spacing requirements. Mol Cell Biol. 1993 Sep;13(9):5918–5927. doi: 10.1128/mcb.13.9.5918. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES