Skip to main content
Genetics logoLink to Genetics
. 1999 May;152(1):307–318. doi: 10.1093/genetics/152.1.307

stumps, a Drosophila gene required for fibroblast growth factor (FGF)-directed migrations of tracheal and mesodermal cells.

F Imam 1, D Sutherland 1, W Huang 1, M A Krasnow 1
PMCID: PMC1460608  PMID: 10224263

Abstract

Fibroblast growth factors (FGFs) bind to FGF receptors, transmembrane tyrosine kinases that activate mitogenic, motogenic, and differentiative responses in different tissues. While there has been substantial progress in elucidating the Ras-MAP kinase pathway that mediates the differentiative responses, the signal transduction pathways that lead to directed cell migrations are not well defined. Here we describe a Drosophila gene called stumps that is required for FGF-dependent migrations of tracheal and mesodermal cells. These migrations are controlled by different FGF ligands and receptors, and they occur by different cellular mechanisms: the tracheal migrations occur as part of an epithelium whereas the mesodermal migrations are fibroblast-like. In the stumps mutant, tracheal cells fail to move out from the epithelial sacs, and only rudimentary tracheal branches form. Mesodermal cells fail in their dorsal migrations after gastrulation. The stumps mutation does not block all FGF signaling effects in these tissues: both random cell migrations and Ras-MAP kinase-mediated induction of FGF-specific effector genes occurred upon ectopic expression of the ligand or upon expression of a constitutively activated Ras protein in the migrating cells. The results suggest that stumps function promotes FGF-directed cell migrations, either by potentiating the FGF signaling process or by coupling the signal to the cellular machinery required for directed cell movement.

Full Text

The Full Text of this article is available as a PDF (526.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affolter M., Nellen D., Nussbaumer U., Basler K. Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGF beta homologs during Drosophila embryogenesis. Development. 1994 Nov;120(11):3105–3117. doi: 10.1242/dev.120.11.3105. [DOI] [PubMed] [Google Scholar]
  2. Anand-Apte B., Zetter B. Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells. 1997;15(4):259–267. doi: 10.1002/stem.150259. [DOI] [PubMed] [Google Scholar]
  3. Beiman M., Shilo B. Z., Volk T. Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev. 1996 Dec 1;10(23):2993–3002. doi: 10.1101/gad.10.23.2993. [DOI] [PubMed] [Google Scholar]
  4. Bour B. A., O'Brien M. A., Lockwood W. L., Goldstein E. S., Bodmer R., Taghert P. H., Abmayr S. M., Nguyen H. T. Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev. 1995 Mar 15;9(6):730–741. doi: 10.1101/gad.9.6.730. [DOI] [PubMed] [Google Scholar]
  5. DeVore D. L., Horvitz H. R., Stern M. J. An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell. 1995 Nov 17;83(4):611–620. doi: 10.1016/0092-8674(95)90101-9. [DOI] [PubMed] [Google Scholar]
  6. Frasch M., Hoey T., Rushlow C., Doyle H., Levine M. Characterization and localization of the even-skipped protein of Drosophila. EMBO J. 1987 Mar;6(3):749–759. doi: 10.1002/j.1460-2075.1987.tb04817.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frasch M. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature. 1995 Mar 30;374(6521):464–467. doi: 10.1038/374464a0. [DOI] [PubMed] [Google Scholar]
  8. Gabay L., Seger R., Shilo B. Z. In situ activation pattern of Drosophila EGF receptor pathway during development. Science. 1997 Aug 22;277(5329):1103–1106. doi: 10.1126/science.277.5329.1103. [DOI] [PubMed] [Google Scholar]
  9. Gabay L., Seger R., Shilo B. Z. MAP kinase in situ activation atlas during Drosophila embryogenesis. Development. 1997 Sep;124(18):3535–3541. doi: 10.1242/dev.124.18.3535. [DOI] [PubMed] [Google Scholar]
  10. Gisselbrecht S., Skeath J. B., Doe C. Q., Michelson A. M. heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev. 1996 Dec 1;10(23):3003–3017. doi: 10.1101/gad.10.23.3003. [DOI] [PubMed] [Google Scholar]
  11. Glazer L., Shilo B. Z. The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev. 1991 Apr;5(4):697–705. doi: 10.1101/gad.5.4.697. [DOI] [PubMed] [Google Scholar]
  12. Greig S., Akam M. The role of homeotic genes in the specification of the Drosophila gonad. Curr Biol. 1995 Sep 1;5(9):1057–1062. doi: 10.1016/s0960-9822(95)00210-7. [DOI] [PubMed] [Google Scholar]
  13. Guillemin K., Groppe J., Ducker K., Treisman R., Hafen E., Affolter M., Krasnow M. A. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development. 1996 May;122(5):1353–1362. doi: 10.1242/dev.122.5.1353. [DOI] [PubMed] [Google Scholar]
  14. Hacohen N., Kramer S., Sutherland D., Hiromi Y., Krasnow M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998 Jan 23;92(2):253–263. doi: 10.1016/s0092-8674(00)80919-8. [DOI] [PubMed] [Google Scholar]
  15. Johnson D. E., Williams L. T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41. doi: 10.1016/s0065-230x(08)60821-0. [DOI] [PubMed] [Google Scholar]
  16. Kaech S. M., Whitfield C. W., Kim S. K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell. 1998 Sep 18;94(6):761–771. doi: 10.1016/s0092-8674(00)81735-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klämbt C., Glazer L., Shilo B. Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 1992 Sep;6(9):1668–1678. doi: 10.1101/gad.6.9.1668. [DOI] [PubMed] [Google Scholar]
  18. Lee T., Feig L., Montell D. J. Two distinct roles for Ras in a developmentally regulated cell migration. Development. 1996 Feb;122(2):409–418. doi: 10.1242/dev.122.2.409. [DOI] [PubMed] [Google Scholar]
  19. Martin G. R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 1998 Jun 1;12(11):1571–1586. doi: 10.1101/gad.12.11.1571. [DOI] [PubMed] [Google Scholar]
  20. Michelson A. M., Gisselbrecht S., Buff E., Skeath J. B. Heartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila. Development. 1998 Nov;125(22):4379–4389. doi: 10.1242/dev.125.22.4379. [DOI] [PubMed] [Google Scholar]
  21. Michelson A. M., Gisselbrecht S., Zhou Y., Baek K. H., Buff E. M. Dual functions of the heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev Genet. 1998;22(3):212–229. doi: 10.1002/(SICI)1520-6408(1998)22:3<212::AID-DVG4>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  22. Murphy A. M., Lee T., Andrews C. M., Shilo B. Z., Montell D. J. The breathless FGF receptor homolog, a downstream target of Drosophila C/EBP in the developmental control of cell migration. Development. 1995 Aug;121(8):2255–2263. doi: 10.1242/dev.121.8.2255. [DOI] [PubMed] [Google Scholar]
  23. Reichman-Fried M., Dickson B., Hafen E., Shilo B. Z. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev. 1994 Feb 15;8(4):428–439. doi: 10.1101/gad.8.4.428. [DOI] [PubMed] [Google Scholar]
  24. Samakovlis C., Hacohen N., Manning G., Sutherland D. C., Guillemin K., Krasnow M. A. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development. 1996 May;122(5):1395–1407. doi: 10.1242/dev.122.5.1395. [DOI] [PubMed] [Google Scholar]
  25. Shishido E., Ono N., Kojima T., Saigo K. Requirements of DFR1/Heartless, a mesoderm-specific Drosophila FGF-receptor, for the formation of heart, visceral and somatic muscles, and ensheathing of longitudinal axon tracts in CNS. Development. 1997 Jun;124(11):2119–2128. doi: 10.1242/dev.124.11.2119. [DOI] [PubMed] [Google Scholar]
  26. Spivak-Kroizman T., Lemmon M. A., Dikic I., Ladbury J. E., Pinchasi D., Huang J., Jaye M., Crumley G., Schlessinger J., Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994 Dec 16;79(6):1015–1024. doi: 10.1016/0092-8674(94)90032-9. [DOI] [PubMed] [Google Scholar]
  27. Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sundaram M., Yochem J., Han M. A Ras-mediated signal transduction pathway is involved in the control of sex myoblast migration in Caenorhabditis elegans. Development. 1996 Sep;122(9):2823–2833. doi: 10.1242/dev.122.9.2823. [DOI] [PubMed] [Google Scholar]
  29. Sutherland D., Samakovlis C., Krasnow M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell. 1996 Dec 13;87(6):1091–1101. doi: 10.1016/s0092-8674(00)81803-6. [DOI] [PubMed] [Google Scholar]
  30. Terranova V. P., DiFlorio R., Lyall R. M., Hic S., Friesel R., Maciag T. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J Cell Biol. 1985 Dec;101(6):2330–2334. doi: 10.1083/jcb.101.6.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vincent S., Wilson R., Coelho C., Affolter M., Leptin M. The Drosophila protein Dof is specifically required for FGF signaling. Mol Cell. 1998 Oct;2(4):515–525. doi: 10.1016/s1097-2765(00)80151-3. [DOI] [PubMed] [Google Scholar]
  32. Ward M. P., Mosher J. T., Crews S. T. Regulation of bHLH-PAS protein subcellular localization during Drosophila embryogenesis. Development. 1998 May;125(9):1599–1608. doi: 10.1242/dev.125.9.1599. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES