Skip to main content
Genetics logoLink to Genetics
. 1999 May;152(1):153–166. doi: 10.1093/genetics/152.1.153

Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes.

B Przybyla-Zawislak 1, D M Gadde 1, K Ducharme 1, M T McCammon 1
PMCID: PMC1460613  PMID: 10224250

Abstract

The eight enzymes of the tricarboxylic acid (TCA) cycle are encoded by at least 15 different nuclear genes in Saccharomyces cerevisiae. We have constructed a set of yeast strains defective in these genes as part of a comprehensive analysis of the interactions among the TCA cycle proteins. The 15 major TCA cycle genes can be sorted into five phenotypic categories on the basis of their growth on nonfermentable carbon sources. We have previously reported a novel phenotype associated with mutants defective in the IDH2 gene encoding the Idh2p subunit of the NAD+-dependent isocitrate dehydrogenase (NAD-IDH). Null and nonsense idh2 mutants grow poorly on glycerol, but growth can be enhanced by extragenic mutations, termed glycerol suppressors, in the CIT1 gene encoding the TCA cycle citrate synthase and in other genes of oxidative metabolism. The TCA cycle mutant collection was utilized to search for other genes that can suppress idh2 mutants and to identify TCA cycle genes that display a similar suppressible growth phenotype on glycerol. Mutations in 7 TCA cycle genes were capable of functioning as suppressors for growth of idh2 mutants on glycerol. The only other TCA cycle gene to display the glycerol-suppressor-accumulation phenotype was IDH1, which encodes the companion Idh1p subunit of NAD-IDH. These results provide genetic evidence that NAD-IDH plays a unique role in TCA cycle function.

Full Text

The Full Text of this article is available as a PDF (319.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bullis B. L., Lemire B. D. Isolation and characterization of the Saccharomyces cerevisiae SDH4 gene encoding a membrane anchor subunit of succinate dehydrogenase. J Biol Chem. 1994 Mar 4;269(9):6543–6549. [PubMed] [Google Scholar]
  3. Chapman K. B., Solomon S. D., Boeke J. D. SDH1, the gene encoding the succinate dehydrogenase flavoprotein subunit from Saccharomyces cerevisiae. Gene. 1992 Sep 1;118(1):131–136. doi: 10.1016/0378-1119(92)90260-v. [DOI] [PubMed] [Google Scholar]
  4. Cupp J. R., McAlister-Henn L. Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem. 1992 Aug 15;267(23):16417–16423. [PubMed] [Google Scholar]
  5. Cupp J. R., McAlister-Henn L. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry. 1993 Sep 14;32(36):9323–9328. doi: 10.1021/bi00087a010. [DOI] [PubMed] [Google Scholar]
  6. Cupp J. R., McAlister-Henn L. NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J Biol Chem. 1991 Nov 25;266(33):22199–22205. [PubMed] [Google Scholar]
  7. Daignan-Fornier B., Valens M., Lemire B. D., Bolotin-Fukuhara M. Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. J Biol Chem. 1994 Jun 3;269(22):15469–15472. [PubMed] [Google Scholar]
  8. De Virgilio C., Bürckert N., Barth G., Neuhaus J. M., Boller T., Wiemken A. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast. 1992 Dec;8(12):1043–1051. doi: 10.1002/yea.320081207. [DOI] [PubMed] [Google Scholar]
  9. DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
  10. Elzinga S. D., Bednarz A. L., van Oosterum K., Dekker P. J., Grivell L. A. Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res. 1993 Nov 25;21(23):5328–5331. doi: 10.1093/nar/21.23.5328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gadde D. M., McCammon M. T. Mutations in the IDH2 gene encoding the catalytic subunit of the yeast NAD+-dependent isocitrate dehydrogenase can be suppressed by mutations in the CIT1 gene encoding citrate synthase and other genes of oxidative metabolism. Arch Biochem Biophys. 1997 Aug 1;344(1):139–149. doi: 10.1006/abbi.1997.0191. [DOI] [PubMed] [Google Scholar]
  12. Gadde D. M., Yang E., McCammon M. T. An unassembled subunit of NAD(+)-dependent isocitrate dehydrogenase is insoluble and covalently modified. Arch Biochem Biophys. 1998 Jun 1;354(1):102–110. doi: 10.1006/abbi.1998.0677. [DOI] [PubMed] [Google Scholar]
  13. Gangloff S. P., Marguet D., Lauquin G. J. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol Cell Biol. 1990 Jul;10(7):3551–3561. doi: 10.1128/mcb.10.7.3551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haselbeck R. J., McAlister-Henn L. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J Biol Chem. 1993 Jun 5;268(16):12116–12122. [PubMed] [Google Scholar]
  15. Jia Y. K., Bécam A. M., Herbert C. J. The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase. Mol Microbiol. 1997 Apr;24(1):53–59. doi: 10.1046/j.1365-2958.1997.3011669.x. [DOI] [PubMed] [Google Scholar]
  16. Kaplan R. S., Mayor J. A., Kakhniashvili D., Gremse D. A., Wood D. O., Nelson D. R. Deletion of the nuclear gene encoding the mitochondrial citrate transport protein from Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1996 Sep 24;226(3):657–662. doi: 10.1006/bbrc.1996.1411. [DOI] [PubMed] [Google Scholar]
  17. Kim K. S., Rosenkrantz M. S., Guarente L. Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol. 1986 Jun;6(6):1936–1942. doi: 10.1128/mcb.6.6.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kispal G., Sumegi B., Dietmeier K., Bock I., Gajdos G., Tomcsanyi T., Sandor A. Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. Use of the cDNA in gene disruption studies. J Biol Chem. 1993 Jan 25;268(3):1824–1829. [PubMed] [Google Scholar]
  19. Lindbladh C., Brodeur R. D., Small W. C., Lilius G., Bülow L., Mosbach K., Srere P. A. Metabolic studies on Saccharomyces cerevisiae containing fused citrate synthase/malate dehydrogenase. Biochemistry. 1994 Oct 4;33(39):11684–11691. doi: 10.1021/bi00205a003. [DOI] [PubMed] [Google Scholar]
  20. Lindbladh C., Rault M., Hagglund C., Small W. C., Mosbach K., Bülow L., Evans C., Srere P. A. Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase. Biochemistry. 1994 Oct 4;33(39):11692–11698. doi: 10.1021/bi00205a004. [DOI] [PubMed] [Google Scholar]
  21. Lombardo A., Carine K., Scheffler I. E. Cloning and characterization of the iron-sulfur subunit gene of succinate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem. 1990 Jun 25;265(18):10419–10423. [PubMed] [Google Scholar]
  22. Lorenz M. C., Muir R. S., Lim E., McElver J., Weber S. C., Heitman J. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene. 1995 May 26;158(1):113–117. doi: 10.1016/0378-1119(95)00144-u. [DOI] [PubMed] [Google Scholar]
  23. McAlister-Henn L., Thompson L. M. Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J Bacteriol. 1987 Nov;169(11):5157–5166. doi: 10.1128/jb.169.11.5157-5166.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McCammon M. T. Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn- mutants. Genetics. 1996 Sep;144(1):57–69. doi: 10.1093/genetics/144.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McCammon M. T., Veenhuis M., Trapp S. B., Goodman J. M. Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J Bacteriol. 1990 Oct;172(10):5816–5827. doi: 10.1128/jb.172.10.5816-5827.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Minard K. I., McAlister-Henn L. Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase. Mol Cell Biol. 1991 Jan;11(1):370–380. doi: 10.1128/mcb.11.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miran S. G., Lawson J. E., Reed L. J. Characterization of PDH beta 1, the structural gene for the pyruvate dehydrogenase beta subunit from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1252–1256. doi: 10.1073/pnas.90.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pronk J. T., Yde Steensma H., Van Dijken J. P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 1996 Dec;12(16):1607–1633. doi: 10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  29. Przybyla-Zawislak B., Dennis R. A., Zakharkin S. O., McCammon M. T. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae. Eur J Biochem. 1998 Dec 1;258(2):736–743. doi: 10.1046/j.1432-1327.1998.2580736.x. [DOI] [PubMed] [Google Scholar]
  30. Repetto B., Tzagoloff A. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase. Mol Cell Biol. 1989 Jun;9(6):2695–2705. doi: 10.1128/mcb.9.6.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Repetto B., Tzagoloff A. Structure and regulation of KGD2, the structural gene for yeast dihydrolipoyl transsuccinylase. Mol Cell Biol. 1990 Aug;10(8):4221–4232. doi: 10.1128/mcb.10.8.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ross J., Reid G. A., Dawes I. W. The nucleotide sequence of the LPD1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J Gen Microbiol. 1988 May;134(5):1131–1139. doi: 10.1099/00221287-134-5-1131. [DOI] [PubMed] [Google Scholar]
  33. Rothstein R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 1991;194:281–301. doi: 10.1016/0076-6879(91)94022-5. [DOI] [PubMed] [Google Scholar]
  34. Small W. C., McAlister-Henn L. Metabolic effects of altering redundant targeting signals for yeast mitochondrial malate dehydrogenase. Arch Biochem Biophys. 1997 Aug 1;344(1):53–60. doi: 10.1006/abbi.1997.0179. [DOI] [PubMed] [Google Scholar]
  35. Srere P. A., Sumegi B., Sherry A. D. Organizational aspects of the citric acid cycle. Biochem Soc Symp. 1987;54:173–178. [PubMed] [Google Scholar]
  36. Suissa M., Suda K., Schatz G. Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method. EMBO J. 1984 Aug;3(8):1773–1781. doi: 10.1002/j.1460-2075.1984.tb02045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sumegi B., McCammon M. T., Sherry A. D., Keys D. A., McAlister-Henn L., Srere P. A. Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast. Biochemistry. 1992 Sep 22;31(37):8720–8725. doi: 10.1021/bi00152a006. [DOI] [PubMed] [Google Scholar]
  38. Veenhuis M., Mateblowski M., Kunau W. H., Harder W. Proliferation of microbodies in Saccharomyces cerevisiae. Yeast. 1987 Jun;3(2):77–84. doi: 10.1002/yea.320030204. [DOI] [PubMed] [Google Scholar]
  39. Vélot C., Mixon M. B., Teige M., Srere P. A. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry. 1997 Nov 25;36(47):14271–14276. doi: 10.1021/bi972011j. [DOI] [PubMed] [Google Scholar]
  40. Wu M., Tzagoloff A. Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. J Biol Chem. 1987 Sep 5;262(25):12275–12282. [PubMed] [Google Scholar]
  41. Zhao W. N., McAlister-Henn L. Affinity purification and kinetic analysis of mutant forms of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem. 1997 Aug 29;272(35):21811–21817. doi: 10.1074/jbc.272.35.21811. [DOI] [PubMed] [Google Scholar]
  42. Zhao W. N., McAlister-Henn L. Assembly and function of a cytosolic form of NADH-specific isocitrate dehydrogenase in yeast. J Biol Chem. 1996 Apr 26;271(17):10347–10352. [PubMed] [Google Scholar]
  43. van Roermund C. W., Hettema E. H., Kal A. J., van den Berg M., Tabak H. F., Wanders R. J. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. EMBO J. 1998 Feb 2;17(3):677–687. doi: 10.1093/emboj/17.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van den Berg M. A., de Jong-Gubbels P., Steensma H. Y. Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. Yeast. 1998 Sep 15;14(12):1089–1104. doi: 10.1002/(SICI)1097-0061(19980915)14:12<1089::AID-YEA312>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES