Abstract
Selection of mutator alleles, increasing the mutation rate up to 10, 000-fold, has been observed during in vitro experimental evolution. This spread is ascribed to the hitchhiking of mutator alleles with favorable mutations, as demonstrated by a theoretical model using selective parameters corresponding to such experiments. Observations of unexpectedly high frequencies of mutators in natural isolates suggest that the same phenomenon could occur in the wild. But it remains questionable whether realistic in natura parameter values could also result in selection of mutators. In particular, the main parameters of adaptation, the size of the adapting population and the height and steepness of the adaptive peak characterizing adaptation, are very variable in nature. By simulation approach, we studied the effect of these parameters on the selection of mutators in asexual populations, assuming additive fitness. We show that the larger the population size, the more likely the fixation of mutator alleles. At a large population size, at least four adaptive mutations are needed for mutator fixation; moreover, under stronger selection stronger mutators are selected. We propose a model based on multiple mutations to illustrate how second-order selection can optimize population fitness when few favorable mutations are required for adaptation.
Full Text
The Full Text of this article is available as a PDF (129.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berg O. G. Selection intensity for codon bias and the effective population size of Escherichia coli. Genetics. 1996 Apr;142(4):1379–1382. doi: 10.1093/genetics/142.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerrish P. J., Lenski R. E. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102-103(1-6):127–144. [PubMed] [Google Scholar]
- Goldin B. R. In situ bacterial metabolism and colon mutagens. Annu Rev Microbiol. 1986;40:367–393. doi: 10.1146/annurev.mi.40.100186.002055. [DOI] [PubMed] [Google Scholar]
- Gross M. D., Siegel E. C. Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat Res. 1981 Mar;91(2):107–110. doi: 10.1016/0165-7992(81)90081-6. [DOI] [PubMed] [Google Scholar]
- Hartl D. L., Dykhuizen D. E. The population genetics of Escherichia coli. Annu Rev Genet. 1984;18:31–68. doi: 10.1146/annurev.ge.18.120184.000335. [DOI] [PubMed] [Google Scholar]
- Ishii K., Matsuda H., Iwasa Y., Sasaki A. Evolutionarily stable mutation rate in a periodically changing environment. Genetics. 1989 Jan;121(1):163–174. doi: 10.1093/genetics/121.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JYSSUM K. Observations on two types of genetic instability in Escherichia coli. Acta Pathol Microbiol Scand. 1960;48:113–120. doi: 10.1111/j.1699-0463.1960.tb04747.x. [DOI] [PubMed] [Google Scholar]
- Jackson A. L., Loeb L. A. The mutation rate and cancer. Genetics. 1998 Apr;148(4):1483–1490. doi: 10.1093/genetics/148.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
- Lenski R. E., Travisano M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808–6814. doi: 10.1073/pnas.91.15.6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liberman U., Feldman M. W. Modifiers of mutation rate: a general reduction principle. Theor Popul Biol. 1986 Aug;30(1):125–142. doi: 10.1016/0040-5809(86)90028-6. [DOI] [PubMed] [Google Scholar]
- Mao E. F., Lane L., Lee J., Miller J. H. Proliferation of mutators in A cell population. J Bacteriol. 1997 Jan;179(2):417–422. doi: 10.1128/jb.179.2.417-422.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science. 1997 Sep 19;277(5333):1833–1834. doi: 10.1126/science.277.5333.1833. [DOI] [PubMed] [Google Scholar]
- Michalakis Y., Slatkin M. Interaction of selection and recombination in the fixation of negative-epistatic genes. Genet Res. 1996 Jun;67(3):257–269. doi: 10.1017/s0016672300033747. [DOI] [PubMed] [Google Scholar]
- Milkman R. Recombination and population structure in Escherichia coli. Genetics. 1997 Jul;146(3):745–750. doi: 10.1093/genetics/146.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. H. Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol. 1996;50:625–643. doi: 10.1146/annurev.micro.50.1.625. [DOI] [PubMed] [Google Scholar]
- Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol. 1994 Jan 1;4(1):24–33. doi: 10.1016/s0960-9822(00)00005-1. [DOI] [PubMed] [Google Scholar]
- Ninio J. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics. 1991 Nov;129(3):957–962. doi: 10.1093/genetics/129.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto S. P., Barton N. H. The evolution of recombination: removing the limits to natural selection. Genetics. 1997 Oct;147(2):879–906. doi: 10.1093/genetics/147.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pupo G. M., Richardson B. J. Biochemical genetics of a natural population of Escherichia coli: seasonal changes in alleles and haplotypes. Microbiology. 1995 Apr;141(Pt 4):1037–1044. doi: 10.1099/13500872-141-4-1037. [DOI] [PubMed] [Google Scholar]
- Savage D. C. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–133. doi: 10.1146/annurev.mi.31.100177.000543. [DOI] [PubMed] [Google Scholar]
- Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
- Stephan W. The rate of compensatory evolution. Genetics. 1996 Sep;144(1):419–426. doi: 10.1093/genetics/144.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taddei F., Matic I., Godelle B., Radman M. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol. 1997 Nov;5(11):427–429. doi: 10.1016/S0966-842X(97)01157-8. [DOI] [PubMed] [Google Scholar]
- Taddei F., Matic I., Radman M. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11736–11740. doi: 10.1073/pnas.92.25.11736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997 Jun 12;387(6634):700–702. doi: 10.1038/42696. [DOI] [PubMed] [Google Scholar]
- Whitman W. B., Coleman D. C., Wiebe W. J. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578–6583. doi: 10.1073/pnas.95.12.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Stackebrandt E., Ludwig W. What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol. 1984;21(4):305–316. doi: 10.1007/BF02115648. [DOI] [PubMed] [Google Scholar]