Skip to main content
Genetics logoLink to Genetics
. 1999 Jun;152(2):755–761. doi: 10.1093/genetics/152.2.755

Using maximum likelihood to estimate population size from temporal changes in allele frequencies.

E G Williamson 1, M Slatkin 1
PMCID: PMC1460624  PMID: 10353915

Abstract

We develop a maximum-likelihood framework for using temporal changes in allele frequencies to estimate the number of breeding individuals in a population. We use simulations to compare the performance of this estimator to an F-statistic estimator of variance effective population size. The maximum-likelihood estimator had a lower variance and smaller bias. Taking advantage of the likelihood framework, we extend the model to include exponential growth and show that temporal allele frequency data from three or more sampling events can be used to test for population growth.

Full Text

The Full Text of this article is available as a PDF (127.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dallas J. F., Bonhomme F., Boursot P., Britton-Davidian J., Bauchau V. Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism. Heredity (Edinb) 1998 Jan;80(Pt 1):70–77. doi: 10.1046/j.1365-2540.1998.00258.x. [DOI] [PubMed] [Google Scholar]
  2. Jorde P. E., Ryman N. Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics. 1996 Jul;143(3):1369–1381. doi: 10.1093/genetics/143.3.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lehmann T., Hawley W. A., Grebert H., Collins F. H. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol. 1998 Mar;15(3):264–276. doi: 10.1093/oxfordjournals.molbev.a025923. [DOI] [PubMed] [Google Scholar]
  4. Luikart G., Sherwin W. B., Steele B. M., Allendorf F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol. 1998 Aug;7(8):963–974. doi: 10.1046/j.1365-294x.1998.00414.x. [DOI] [PubMed] [Google Scholar]
  5. Miller L. M., Kapuscinski A. R. Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics. 1997 Nov;147(3):1249–1258. doi: 10.1093/genetics/147.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981 Jul;98(3):625–640. doi: 10.1093/genetics/98.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pollak E. A new method for estimating the effective population size from allele frequency changes. Genetics. 1983 Jul;104(3):531–548. doi: 10.1093/genetics/104.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Scribner K. T., Arntzen J. W., Burke T. Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci. Mol Ecol. 1997 Aug;6(8):701–712. doi: 10.1046/j.1365-294x.1997.00238.x. [DOI] [PubMed] [Google Scholar]
  9. Waples R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989 Feb;121(2):379–391. doi: 10.1093/genetics/121.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES