Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Aug 15;24(16):3246–3252. doi: 10.1093/nar/24.16.3246

Kinetics of spontaneous displacement of RNA from heteroduplexes by DNA.

R Landgraf 1, K S Ramamurthi 1, D S Sigman 1
PMCID: PMC146063  PMID: 8774908

Abstract

We have used R-loop formation and direct hybridization techniques to analyze the kinetics by which RNA is displaced from a heteroduplex by DNA of identical sequence. Using random walk simulations we were able to calculate the step times for a single displacement reaction. For RNA with a GC content of 57-60% the data indicate an RNA exchange probability of 50.06%, which is indicative of a modest destabilization of the heteroduplex compared with a DNA duplex in the presence of magnesium. The average step time for the reversible exchange of a single nucleotide is 345.0 (+/- 1.3) ms/step. An acceleration of the displacement reaction was observed in the absence of magnesium. A comparison with step times for elongation shows that RNA displacement would not be rate limiting to transcription elongation under two conditions: (i) if magnesium is eliminated from the newly synthesized heteroduplex; (ii) if displacement is kept in a forward only exchange mode through binding of the emerging RNA. Distamycin, a minor groove binding drug, is very effective as a 'catalyst' of RNA displacement. This effect is likely to be due to preferential binding of distamycin to the minor groove of the DNA duplex as opposed to the heteroduplex. This kinetic assay could therefore serve as a convenient assay for the determination of binding preferences of nucleic acid ligands.

Full Text

The Full Text of this article is available as a PDF (102.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chamberlin M. J. Comparative properties of DNA, RNA, and hybrid homopolymer pairs. Fed Proc. 1965 Nov-Dec;24(6):1446–1457. [PubMed] [Google Scholar]
  2. Chamberlin M. J. New models for the mechanism of transcription elongation and its regulation. Harvey Lect. 1992 1993;88:1–21. [PubMed] [Google Scholar]
  3. Chen C. B., Gorin M. B., Sigman D. S. Sequence-specific scission of DNA by the chemical nuclease activity of 1,10-phenanthroline-copper(I) targeted by RNA. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4206–4210. doi: 10.1073/pnas.90.9.4206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coll M., Aymami J., van der Marel G. A., van Boom J. H., Rich A., Wang A. H. Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochemistry. 1989 Jan 10;28(1):310–320. doi: 10.1021/bi00427a042. [DOI] [PubMed] [Google Scholar]
  5. Dickerson R. E., Drew H. R., Conner B. N., Wing R. M., Fratini A. V., Kopka M. L. The anatomy of A-, B-, and Z-DNA. Science. 1982 Apr 30;216(4545):475–485. doi: 10.1126/science.7071593. [DOI] [PubMed] [Google Scholar]
  6. Dressler D., Potter H. Molecular mechanisms in genetic recombination. Annu Rev Biochem. 1982;51:727–761. doi: 10.1146/annurev.bi.51.070182.003455. [DOI] [PubMed] [Google Scholar]
  7. Gamper H. B., Hearst J. E. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell. 1982 May;29(1):81–90. doi: 10.1016/0092-8674(82)90092-7. [DOI] [PubMed] [Google Scholar]
  8. Hall K. B., McLaughlin L. W. Thermodynamic and structural properties of pentamer DNA.DNA, RNA.RNA, and DNA.RNA duplexes of identical sequence. Biochemistry. 1991 Nov 5;30(44):10606–10613. doi: 10.1021/bi00108a002. [DOI] [PubMed] [Google Scholar]
  9. Jaishree T. N., van der Marel G. A., van Boom J. H., Wang A. H. Structural influence of RNA incorporation in DNA: quantitative nuclear magnetic resonance refinement of d(CG)r(CG)d(CG) and d(CG)r(C)d(TAGCG). Biochemistry. 1993 May 11;32(18):4903–4911. doi: 10.1021/bi00069a027. [DOI] [PubMed] [Google Scholar]
  10. Kaback D. B., Angerer L. M., Davidson N. Improved methods for the formation and stabilization of R-loops. Nucleic Acids Res. 1979 Jun 11;6(7):2499–2317. doi: 10.1093/nar/6.7.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klevit R. E., Wemmer D. E., Reid B. R. 1H NMR studies on the interaction between distamycin A and a symmetrical DNA dodecamer. Biochemistry. 1986 Jun 3;25(11):3296–3303. doi: 10.1021/bi00359a032. [DOI] [PubMed] [Google Scholar]
  12. Landgraf R., Chen C. H., Sigman D. S. Double stranded scission of DNA directed through sequence-specific R-loop formation. Nucleic Acids Res. 1995 Sep 11;23(17):3524–3530. doi: 10.1093/nar/23.17.3524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Landgraf R., Chen C. H., Sigman D. S. R-loop stability as a function of RNA structure and size. Nucleic Acids Res. 1995 Sep 11;23(17):3516–3523. doi: 10.1093/nar/23.17.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LeMaire M. F., Thummel C. S. Splicing precedes polyadenylation during Drosophila E74A transcription. Mol Cell Biol. 1990 Nov;10(11):6059–6063. doi: 10.1128/mcb.10.11.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee C. H., Mizusawa H., Kakefuda T. Unwinding of double-stranded DNA helix by dehydration. Proc Natl Acad Sci U S A. 1981 May;78(5):2838–2842. doi: 10.1073/pnas.78.5.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
  17. Martin F. H., Tinoco I., Jr DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 1980 May 24;8(10):2295–2299. doi: 10.1093/nar/8.10.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neufeld K. L., Richards O. C., Ehrenfeld E. Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. J Biol Chem. 1991 Dec 15;266(35):24212–24219. [PubMed] [Google Scholar]
  19. Panyutin I. G., Biswas I., Hsieh P. A pivotal role for the structure of the Holliday junction in DNA branch migration. EMBO J. 1995 Apr 18;14(8):1819–1826. doi: 10.1002/j.1460-2075.1995.tb07170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Panyutin I. G., Hsieh P. Formation of a single base mismatch impedes spontaneous DNA branch migration. J Mol Biol. 1993 Mar 20;230(2):413–424. doi: 10.1006/jmbi.1993.1159. [DOI] [PubMed] [Google Scholar]
  21. Panyutin I. G., Hsieh P. The kinetics of spontaneous DNA branch migration. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2021–2025. doi: 10.1073/pnas.91.6.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Patel D. J. Netropsin . dG-dG-dA-dA-dT-dT-dC-dC complex. Antibiotic binding at adenine . thymine base pairs in the minor groove of the self-complementary octanucleotide duplex. Eur J Biochem. 1979 Sep;99(2):369–378. doi: 10.1111/j.1432-1033.1979.tb13265.x. [DOI] [PubMed] [Google Scholar]
  23. Radding C. M., Beattie K. L., Holloman W. K., Wiegand R. C. Uptake of homologous single-stranded fragments by superhelical DNA. IV. Branch migration. J Mol Biol. 1977 Nov;116(4):825–839. doi: 10.1016/0022-2836(77)90273-x. [DOI] [PubMed] [Google Scholar]
  24. Rhodes G., Chamberlin M. J. Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. J Biol Chem. 1974 Oct 25;249(20):6675–6683. [PubMed] [Google Scholar]
  25. Rosbash M., Blank D., Fahrner K., Hereford L., Ricciardi R., Roberts B., Ruby S., Woolford J. R-looping and structural gene indentification of recombinant DNA. Methods Enzymol. 1979;68:454–469. doi: 10.1016/0076-6879(79)68035-7. [DOI] [PubMed] [Google Scholar]
  26. Sigman D. S., Chen C. H., Gorin M. B. Sequence-specific scission of DNA by RNAs linked to a chemical nuclease. Nature. 1993 Jun 3;363(6428):474–475. doi: 10.1038/363474a0. [DOI] [PubMed] [Google Scholar]
  27. Skuratovskii I. Ia, Bartenev V. N. Issledovanie struktury magnievoi i litievoi solei DNK faga T2 metodom difraktsii rentgenovykh luchei. O vozmozhnom mekhanizme uchastiia kationov v strukturnykh prevrashcheniiakh dvuspiral' noi DNK. Mol Biol (Mosk) 1978 Nov-Dec;12(6):1359–1376. [PubMed] [Google Scholar]
  28. Stevens A. Studies of the ribonucleic acid polymerase from Escherichia coli. V. Studies of its complexes with polyribonucleotides. J Biol Chem. 1969 Jan 25;244(2):425–429. [PubMed] [Google Scholar]
  29. Thomas M., White R. L., Davis R. W. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2294–2298. doi: 10.1073/pnas.73.7.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Woolford J. L., Jr, Rosbash M. The use of R-looping for structural gene identification and mRNA purification. Nucleic Acids Res. 1979 Jun 11;6(7):2483–2497. doi: 10.1093/nar/6.7.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zimmer C., Luck G. Stability and dissociation of the DNA complexes with distamycin A and Netropsin in the presence of organic solvents, urea and high salt concentration. Biochim Biophys Acta. 1972 Dec 22;287(3):376–385. doi: 10.1016/0005-2787(72)90281-x. [DOI] [PubMed] [Google Scholar]
  32. Zimmer C., Reinert K. E., Luck G., Wähnert U., Löber G., Thrum H. Interaction of the oligopeptide antibiotics netropsin and distamycin A with nucleic acids. J Mol Biol. 1971 May 28;58(1):329–348. doi: 10.1016/0022-2836(71)90250-6. [DOI] [PubMed] [Google Scholar]
  33. von Hippel P. H., Bear D. G., Morgan W. D., McSwiggen J. A. Protein-nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem. 1984;53:389–446. doi: 10.1146/annurev.bi.53.070184.002133. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES