Skip to main content
Genetics logoLink to Genetics
. 1999 Jun;152(2):661–673. doi: 10.1093/genetics/152.2.661

The causes of synonymous rate variation in the rodent genome. Can substitution rates be used to estimate the sex bias in mutation rate?

N G Smith 1, L D Hurst 1
PMCID: PMC1460631  PMID: 10353908

Abstract

Miyata et al. have suggested that the male-to-female mutation rate ratio (alpha) can be estimated by comparing the neutral substitution rates of X-linked (X), Y-linked (Y), and autosomal (A) genes. Rodent silent site X/A comparisons provide very different estimates from X/Y comparisons. We examine three explanations for this discrepancy: (1) statistical biases and artifacts, (2) nonneutral evolution, and (3) differences in mutation rate per germline replication. By estimating errors and using a variety of methodologies, we tentatively reject explanation 1. Our analyses of patterns of codon usage, synonymous rates, and nonsynonymous rates suggest that silent sites in rodents are evolving neutrally, and we can therefore reject explanation 2. We find both base composition and methylation differences between the different sets of chromosomes, a result consistent with explanation 3, but these differences do not appear to explain the observed discrepancies in estimates of alpha. Our finding of significantly low synonymous substitution rates in genomically imprinted genes suggests a link between hemizygous expression and an adaptive reduction in the mutation rate, which is consistent with explanation 3. Therefore our results provide circumstantial evidence in favor of the hypothesis that the discrepancies in estimates of alpha are due to differences in the mutation rate per germline replication between different parts of the genome. This explanation violates a critical assumption of the method of Miyata et al., and hence we suggest that estimates of alpha, obtained using this method, need to be treated with caution.

Full Text

The Full Text of this article is available as a PDF (192.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bulmer M. Neighboring base effects on substitution rates in pseudogenes. Mol Biol Evol. 1986 Jul;3(4):322–329. doi: 10.1093/oxfordjournals.molbev.a040401. [DOI] [PubMed] [Google Scholar]
  3. Bulmer M. The effect of context on synonymous codon usage in genes with low codon usage bias. Nucleic Acids Res. 1990 May 25;18(10):2869–2873. doi: 10.1093/nar/18.10.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang B. H., Shimmin L. C., Shyue S. K., Hewett-Emmett D., Li W. H. Weak male-driven molecular evolution in rodents. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):827–831. doi: 10.1073/pnas.91.2.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Comeron J. M., Aguadé M. An evaluation of measures of synonymous codon usage bias. J Mol Evol. 1998 Sep;47(3):268–274. doi: 10.1007/pl00006384. [DOI] [PubMed] [Google Scholar]
  6. Constância M., Pickard B., Kelsey G., Reik W. Imprinting mechanisms. Genome Res. 1998 Sep;8(9):881–900. doi: 10.1101/gr.8.9.881. [DOI] [PubMed] [Google Scholar]
  7. Culiat C. T., Stubbs L. J., Woychik R. P., Russell L. B., Johnson D. K., Rinchik E. M. Deficiency of the beta 3 subunit of the type A gamma-aminobutyric acid receptor causes cleft palate in mice. Nat Genet. 1995 Nov;11(3):344–346. doi: 10.1038/ng1195-344. [DOI] [PubMed] [Google Scholar]
  8. DeLorey T. M., Handforth A., Anagnostaras S. G., Homanics G. E., Minassian B. A., Asatourian A., Fanselow M. S., Delgado-Escueta A., Ellison G. D., Olsen R. W. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci. 1998 Oct 15;18(20):8505–8514. doi: 10.1523/JNEUROSCI.18-20-08505.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duret L., Mouchiroud D., Gouy M. HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Res. 1994 Jun 25;22(12):2360–2365. doi: 10.1093/nar/22.12.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Efstratiadis A. Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev. 1994 Apr;4(2):265–280. doi: 10.1016/s0959-437x(05)80054-1. [DOI] [PubMed] [Google Scholar]
  11. Eyre-Walker A. C. An analysis of codon usage in mammals: selection or mutation bias? J Mol Evol. 1991 Nov;33(5):442–449. doi: 10.1007/BF02103136. [DOI] [PubMed] [Google Scholar]
  12. Hughes A. L., Yeager M. Comparative evolutionary rates of introns and exons in murine rodents. J Mol Evol. 1997 Aug;45(2):125–130. doi: 10.1007/pl00006211. [DOI] [PubMed] [Google Scholar]
  13. Hurst L. D., Ellegren H. Sex biases in the mutation rate. Trends Genet. 1998 Nov;14(11):446–452. doi: 10.1016/s0168-9525(98)01577-7. [DOI] [PubMed] [Google Scholar]
  14. Ketterling R. P., Vielhaber E., Bottema C. D., Schaid D. J., Cohen M. P., Sexauer C. L., Sommer S. S. Germ-line origins of mutation in families with hemophilia B: the sex ratio varies with the type of mutation. Am J Hum Genet. 1993 Jan;52(1):152–166. [PMC free article] [PubMed] [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  16. Li W. H., Wu C. I., Luo C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 1985 Mar;2(2):150–174. doi: 10.1093/oxfordjournals.molbev.a040343. [DOI] [PubMed] [Google Scholar]
  17. Makalowski W., Boguski M. S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9407–9412. doi: 10.1073/pnas.95.16.9407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McVean G. T., Hurst L. D. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature. 1997 Mar 27;386(6623):388–392. doi: 10.1038/386388a0. [DOI] [PubMed] [Google Scholar]
  19. McVean G. T., Hurst L. D., Moore T. Genomic evolution in mice and men: imprinted genes have little intronic content. Bioessays. 1996 Sep;18(9):773–775. doi: 10.1002/bies.950180913. [DOI] [PubMed] [Google Scholar]
  20. Meguro M., Mitsuya K., Sui H., Shigenami K., Kugoh H., Nakao M., Oshimura M. Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet. 1997 Nov;6(12):2127–2133. doi: 10.1093/hmg/6.12.2127. [DOI] [PubMed] [Google Scholar]
  21. Miller N., McCann A. H., O'Connell D., Pedersen I. S., Spiers V., Gorey T., Dervan P. A. The MAS proto-oncogene is imprinted in human breast tissue. Genomics. 1997 Dec 15;46(3):509–512. doi: 10.1006/geno.1997.5063. [DOI] [PubMed] [Google Scholar]
  22. Miyata T., Hayashida H., Kuma K., Mitsuyasu K., Yasunaga T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb Symp Quant Biol. 1987;52:863–867. doi: 10.1101/sqb.1987.052.01.094. [DOI] [PubMed] [Google Scholar]
  23. Moriyama E. N., Powell J. R. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res. 1998 Jul 1;26(13):3188–3193. doi: 10.1093/nar/26.13.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moriyama E. N., Powell J. R. Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes. J Mol Evol. 1997 Oct;45(4):378–391. doi: 10.1007/pl00006243. [DOI] [PubMed] [Google Scholar]
  25. Morton B. R., Oberholzer V. M., Clegg M. T. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome. J Mol Evol. 1997 Sep;45(3):227–231. doi: 10.1007/pl00006224. [DOI] [PubMed] [Google Scholar]
  26. Mouchiroud D., Gautier C., Bernardi G. Frequencies of synonymous substitutions in mammals are gene-specific and correlated with frequencies of nonsynonymous substitutions. J Mol Evol. 1995 Jan;40(1):107–113. doi: 10.1007/BF00166602. [DOI] [PubMed] [Google Scholar]
  27. Neumann B., Kubicka P., Barlow D. P. Characteristics of imprinted genes. Nat Genet. 1995 Jan;9(1):12–13. doi: 10.1038/ng0195-12. [DOI] [PubMed] [Google Scholar]
  28. Odano I., Anezaki T., Ohkubo M., Yonekura Y., Onishi Y., Inuzuka T., Takahashi M., Tsuji S. Decrease in benzodiazepine receptor binding in a patient with Angelman syndrome detected by iodine-123 iomazenil and single-photon emission tomography. Eur J Nucl Med. 1996 May;23(5):598–604. doi: 10.1007/BF00833400. [DOI] [PubMed] [Google Scholar]
  29. Plass C., Shibata H., Kalcheva I., Mullins L., Kotelevtseva N., Mullins J., Kato R., Sasaki H., Hirotsune S., Okazaki Y. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet. 1996 Sep;14(1):106–109. doi: 10.1038/ng0996-106. [DOI] [PubMed] [Google Scholar]
  30. Riesewijk A. M., Schepens M. T., Mariman E. M., Ropers H. H., Kalscheuer V. M. The MAS proto-oncogene is not imprinted in humans. Genomics. 1996 Jul 15;35(2):380–382. doi: 10.1006/geno.1996.0372. [DOI] [PubMed] [Google Scholar]
  31. Schweifer N., Valk P. J., Delwel R., Cox R., Francis F., Meier-Ewert S., Lehrach H., Barlow D. P. Characterization of the C3 YAC contig from proximal mouse chromosome 17 and analysis of allelic expression of genes flanking the imprinted Igf2r gene. Genomics. 1997 Aug 1;43(3):285–297. doi: 10.1006/geno.1997.4816. [DOI] [PubMed] [Google Scholar]
  32. Sharp P. M., Li W. H. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. doi: 10.1007/BF02603075. [DOI] [PubMed] [Google Scholar]
  33. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  34. Shimmin L. C., Chang B. H., Hewett-Emmett D., Li W. H. Potential problems in estimating the male-to-female mutation rate ratio from DNA sequence data. J Mol Evol. 1993 Aug;37(2):160–166. doi: 10.1007/BF02407351. [DOI] [PubMed] [Google Scholar]
  35. Shimmin L. C., Chang B. H., Li W. H. Contrasting rates of nucleotide substitution in the X-linked and Y-linked zinc finger genes. J Mol Evol. 1994 Dec;39(6):569–578. doi: 10.1007/BF00160402. [DOI] [PubMed] [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Villar A. J., Pedersen R. A. Parental imprinting of the Mas protooncogene in mouse. Nat Genet. 1994 Dec;8(4):373–379. doi: 10.1038/ng1294-373. [DOI] [PubMed] [Google Scholar]
  38. Wentworth B. M., Schaefer I. M., Villa-Komaroff L., Chirgwin J. M. Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol. 1986;23(4):305–312. doi: 10.1007/BF02100639. [DOI] [PubMed] [Google Scholar]
  39. Wolfe K. H., Sharp P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol. 1993 Oct;37(4):441–456. doi: 10.1007/BF00178874. [DOI] [PubMed] [Google Scholar]
  40. Yang W., Chen K., Lan N. C., Gallaher T. K., Shih J. C. Gene structure and expression of the mouse 5-HT2 receptor. J Neurosci Res. 1992 Oct;33(2):196–204. doi: 10.1002/jnr.490330203. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES