Skip to main content
Genetics logoLink to Genetics
. 1999 Jun;152(2):605–616. doi: 10.1093/genetics/152.2.605

Evidence for redundancy but not trans factor-cis element coevolution in the regulation of Drosophila Yp genes.

F Piano 1, M J Parisi 1, R Karess 1, M P Kambysellis 1
PMCID: PMC1460640  PMID: 10353903

Abstract

In Drosophila melanogaster and the endemic Hawaiian species D. grimshawi three Yolk protein (Yp) genes are expressed in a similar sex- and tissue-specific pattern. In contrast, DNA sequence comparisons of promoter/enhancer regions show low levels of similarity. We tested the functional significance of these observations by transforming D. melanogaster with the genomic region that includes the divergently transcribed D. grimshawi DgYp1 and DgYp2 genes; we found that the introduced genes were expressed in female fat body and in ovaries but not in males. Moreover, we found D. grimshawi proteins in the hemolymph and accumulating in ovaries. Using reporter constructs we showed that the intergenic region from D. grimshawi was sufficient to drive accurate expression, but some low level of ectopic expression was seen in males. Transforming D. melanogaster with constructs bearing deletions within the D. grimshawi intergenic region revealed only subtle effects in the overall level of expression, suggesting a high level of redundancy. Testing mutants in the sex-specific regulator doublesex revealed that it is capable of repressing the DgYp genes in males. Together, these data show that D. melanogaster trans-acting factors can regulate the in vivo pattern of DgYp expression and support the notion of a redundant and complex system of cis-acting elements.

Full Text

The Full Text of this article is available as a PDF (413.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel T., Bhatt R., Maniatis T. A Drosophila CREB/ATF transcriptional activator binds to both fat body- and liver-specific regulatory elements. Genes Dev. 1992 Mar;6(3):466–480. doi: 10.1101/gad.6.3.466. [DOI] [PubMed] [Google Scholar]
  2. Abrahamsen N., Martinez A., Kjaer T., Søndergaard L., Bownes M. Cis-regulatory sequences leading to female-specific expression of yolk protein genes 1 and 2 in the fat body of Drosophila melanogaster. Mol Gen Genet. 1993 Feb;237(1-2):41–48. doi: 10.1007/BF00282782. [DOI] [PubMed] [Google Scholar]
  3. An W., Wensink P. C. Integrating sex- and tissue-specific regulation within a single Drosophila enhancer. Genes Dev. 1995 Jan 15;9(2):256–266. doi: 10.1101/gad.9.2.256. [DOI] [PubMed] [Google Scholar]
  4. An W., Wensink P. C. Three protein binding sites form an enhancer that regulates sex- and fat body-specific transcription of Drosophila yolk protein genes. EMBO J. 1995 Mar 15;14(6):1221–1230. doi: 10.1002/j.1460-2075.1995.tb07105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bownes M., Lineruth K., Mauchline D. Egg production and fertility in Drosophila depend upon the number of yolk-protein gene copies. Mol Gen Genet. 1991 Aug;228(1-2):324–327. doi: 10.1007/BF00282485. [DOI] [PubMed] [Google Scholar]
  6. Bownes M., Shirras A., Blair M., Collins J., Coulson A. Evidence that insect embryogenesis is regulated by ecdysteroids released from yolk proteins. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1554–1557. doi: 10.1073/pnas.85.5.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burtis K. C., Coschigano K. T., Baker B. S., Wensink P. C. The doublesex proteins of Drosophila melanogaster bind directly to a sex-specific yolk protein gene enhancer. EMBO J. 1991 Sep;10(9):2577–2582. doi: 10.1002/j.1460-2075.1991.tb07798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burtis K. C. The regulation of sex determination and sexually dimorphic differentiation in Drosophila. Curr Opin Cell Biol. 1993 Dec;5(6):1006–1014. doi: 10.1016/0955-0674(93)90085-5. [DOI] [PubMed] [Google Scholar]
  9. Butterworth F. M., Bownes M., Burde V. S. Genetically modified yolk proteins precipitate in the adult Drosophila fat body. J Cell Biol. 1991 Feb;112(4):727–737. doi: 10.1083/jcb.112.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duboule D., Wilkins A. S. The evolution of 'bricolage'. Trends Genet. 1998 Feb;14(2):54–59. doi: 10.1016/s0168-9525(97)01358-9. [DOI] [PubMed] [Google Scholar]
  11. Falb D., Maniatis T. Drosophila transcriptional repressor protein that binds specifically to negative control elements in fat body enhancers. Mol Cell Biol. 1992 Sep;12(9):4093–4103. doi: 10.1128/mcb.12.9.4093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friederich E., Baeuerle P. A., Garoff H., Hovemann B., Huttner W. B. Expression, tyrosine sulfation, and secretion of yolk protein 2 of Drosophila melanogaster in mouse fibroblasts. J Biol Chem. 1988 Oct 15;263(29):14930–14938. [PubMed] [Google Scholar]
  13. Hatzopoulos P., Kambysellis M. P. Differential and temporal expression of the vitellogenin genes in Drosophila grimshawi. Mol Gen Genet. 1987 Dec;210(3):564–571. doi: 10.1007/BF00327213. [DOI] [PubMed] [Google Scholar]
  14. Hatzopoulos P., Kambysellis M. P. Isolation and structural analysis of Drosophila grimshawi vitellogenin genes. Mol Gen Genet. 1987 Mar;206(3):475–484. doi: 10.1007/BF00428888. [DOI] [PubMed] [Google Scholar]
  15. Kambysellis M. P., Hatzopoulos P., Craddock E. M. The temporal pattern of vitellogenin synthesis in Drosophila grimshawi. J Exp Zool. 1989 Sep;251(3):339–348. doi: 10.1002/jez.1402510310. [DOI] [PubMed] [Google Scholar]
  16. Kambysellis M. P., Hatzopoulos P., Seo E. W., Craddock E. M. Noncoordinate synthesis of the vitellogenin proteins in tissues of Drosophila grimshawi. Dev Genet. 1986;7(2):81–97. doi: 10.1002/dvg.1020070204. [DOI] [PubMed] [Google Scholar]
  17. Kambysellis M. P., Ho K. F., Craddock E. M., Piano F., Parisi M., Cohen J. Pattern of ecological shifts in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny. Curr Biol. 1995 Oct 1;5(10):1129–1139. doi: 10.1016/s0960-9822(95)00229-6. [DOI] [PubMed] [Google Scholar]
  18. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Logan S. K., Wensink P. C. Ovarian follicle cell enhancers from the Drosophila yolk protein genes: different segments of one enhancer have different cell-type specificities that interact to give normal expression. Genes Dev. 1990 Apr;4(4):613–623. doi: 10.1101/gad.4.4.613. [DOI] [PubMed] [Google Scholar]
  21. Lossky M., Wensink P. C. Regulation of Drosophila yolk protein genes by an ovary-specific GATA factor. Mol Cell Biol. 1995 Dec;15(12):6943–6952. doi: 10.1128/mcb.15.12.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ludwig M. Z., Patel N. H., Kreitman M. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development. 1998 Mar;125(5):949–958. doi: 10.1242/dev.125.5.949. [DOI] [PubMed] [Google Scholar]
  23. Martinez A., Bownes M. The specificity of yolk protein uptake in cyclorrhaphan diptera is conserved through evolution. J Mol Evol. 1992 Nov;35(5):444–453. doi: 10.1007/BF00171823. [DOI] [PubMed] [Google Scholar]
  24. Minoo P., Postlethwait J. H. Processing and secretion of a mutant yolk polypeptide in Drosophila. Biochem Genet. 1985 Dec;23(11-12):913–932. doi: 10.1007/BF00499937. [DOI] [PubMed] [Google Scholar]
  25. O'Connell P. O., Rosbash M. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 1984 Jul 11;12(13):5495–5513. doi: 10.1093/nar/12.13.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Piano F., Craddock E. M., Kambysellis M. P. Phylogeny of the island populations of the Hawaiian Drosophila grimshawi complex: evidence from combined data. Mol Phylogenet Evol. 1997 Apr;7(2):173–184. doi: 10.1006/mpev.1996.0387. [DOI] [PubMed] [Google Scholar]
  28. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schonbaum C. P., Lee S., Mahowald A. P. The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1485–1489. doi: 10.1073/pnas.92.5.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Simon J. A., Lis J. T. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. doi: 10.1093/nar/15.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
  32. Thorpe P. A., Loye J., Rote C. A., Dickinson W. J. Evolution of regulatory genes and patterns: relationships to evolutionary rates and to metabolic functions. J Mol Evol. 1993 Dec;37(6):590–599. doi: 10.1007/BF00182745. [DOI] [PubMed] [Google Scholar]
  33. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES