Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Aug 15;24(16):3142–3148. doi: 10.1093/nar/24.16.3142

Regioselective immobilization of short oligonucleotides to acrylic copolymer gels.

E Timofeev 1, S V Kochetkova 1, A D Mirzabekov 1, V L Florentiev 1
PMCID: PMC146065  PMID: 8774893

Abstract

Four types of polyacrylamide or polydimethyl-acrylamide gels for regioselective (by immobilization at the 3' end) of short oligonucleotides have been designed for use in manufacturing oligonucleotide microchips. Two of these supports contain amino or aldehyde groups in the gel, allowing coupling with oligonucleotides bearing aldehyde or amino groups, respectively, in the presence of a reducing agent. The aldehyde gel support showed a higher immobilization efficiency relative to the amino gel. Of all reducing agents tested, the best results were obtained with a pyridine-borane complex. The other supports are based on an acrylamide gel activated with glutaraldehyde or a hydroxyalkyl-functionalized gel treated with mesyl chloride. The use of dimethylacrylamide instead of acrylamide allows subsequent gel modifications in organic solvents. All the immobilization methods are easy and simple to perform, give high and reproducible yields, allow long durations of storage of the activated support, and provide high stability of attachment and low non-specific binding. Although these gel supports have been developed for preparing oligonucleotide microchips, they may be used for other purposes as well.

Full Text

The Full Text of this article is available as a PDF (102.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fahy E., Davis G. R., DiMichele L. J., Ghosh S. S. Design and synthesis of polyacrylamide-based oligonucleotide supports for use in nucleic acid diagnostics. Nucleic Acids Res. 1993 Apr 25;21(8):1819–1826. doi: 10.1093/nar/21.8.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Inman J. K., Dintzis H. M. The derivatization of cross-linked polyacrylamide beads. Controlled introduction of functional groups for the preparation of special-purpose, biochemical adsorbents. Biochemistry. 1969 Oct;8(10):4074–4082. doi: 10.1021/bi00838a026. [DOI] [PubMed] [Google Scholar]
  3. Ivanov I. B., Khrapko K. R., Chernov B. K., Khorlin A. A., Lysov YuP, Florentiev V. L., Mirzabekov A. D. Hybridization properties of gel-immobilized oligonucleotides. Nucleic Acids Symp Ser. 1991;(24):189–190. [PubMed] [Google Scholar]
  4. Khrapko K. R., Lysov YuP, Khorlyn A. A., Shick V. V., Florentiev V. L., Mirzabekov A. D. An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 1989 Oct 9;256(1-2):118–122. doi: 10.1016/0014-5793(89)81730-2. [DOI] [PubMed] [Google Scholar]
  5. Lamture J. B., Beattie K. L., Burke B. E., Eggers M. D., Ehrlich D. J., Fowler R., Hollis M. A., Kosicki B. B., Reich R. K., Smith S. R. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 1994 Jun 11;22(11):2121–2125. doi: 10.1093/nar/22.11.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Livshits M. A., Florentiev V. L., Mirzabekov A. D. Dissociation of duplexes formed by hybridization of DNA with gel-immobilized oligonucleotides. J Biomol Struct Dyn. 1994 Feb;11(4):783–795. doi: 10.1080/07391102.1994.10508032. [DOI] [PubMed] [Google Scholar]
  7. Maskos U., Southern E. M. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res. 1992 Apr 11;20(7):1679–1684. doi: 10.1093/nar/20.7.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mirzabekov A. D. DNA sequencing by hybridization--a megasequencing method and a diagnostic tool? Trends Biotechnol. 1994 Jan;12(1):27–32. doi: 10.1016/0167-7799(94)90008-6. [DOI] [PubMed] [Google Scholar]
  9. Narayanan S. R., Crane L. J. Affinity chromatography supports: a look at performance requirements. Trends Biotechnol. 1990 Jan;8(1):12–16. doi: 10.1016/0167-7799(90)90124-g. [DOI] [PubMed] [Google Scholar]
  10. Pease A. C., Solas D., Sullivan E. J., Cronin M. T., Holmes C. P., Fodor S. P. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5022–5026. doi: 10.1073/pnas.91.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pless D. D., Lee Y. C., Roseman S., Schnaar R. L. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J Biol Chem. 1983 Feb 25;258(4):2340–2349. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES