Skip to main content
Genetics logoLink to Genetics
. 1999 Jul;152(3):1183–1202. doi: 10.1093/genetics/152.3.1183

Genome mapping in capsicum and the evolution of genome structure in the solanaceae.

K D Livingstone 1, V K Lackney 1, J R Blauth 1, R van Wijk 1, M K Jahn 1
PMCID: PMC1460652  PMID: 10388833

Abstract

We have created a genetic map of Capsicum (pepper) from an interspecific F2 population consisting of 11 large (76.2-192.3 cM) and 2 small (19.1 and 12.5 cM) linkage groups that cover a total of 1245.7 cM. Many of the markers are tomato probes that were chosen to cover the tomato genome, allowing comparison of this pepper map to the genetic map of tomato. Hybridization of all tomato-derived probes included in this study to positions throughout the pepper map suggests that no major losses have occurred during the divergence of these genomes. Comparison of the pepper and tomato genetic maps showed that 18 homeologous linkage blocks cover 98.1% of the tomato genome and 95.0% of the pepper genome. Through these maps and the potato map, we determined the number and types of rearrangements that differentiate these species and reconstructed a hypothetical progenitor genome. We conclude there have been 30 breaks as part of 5 translocations, 10 paracentric inversions, 2 pericentric inversions, and 4 disassociations or associations of genomic regions that differentiate tomato, potato, and pepper, as well as an additional reciprocal translocation, nonreciprocal translocation, and a duplication or deletion that differentiate the two pepper mapping parents.

Full Text

The Full Text of this article is available as a PDF (350.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barakat A., Carels N., Bernardi G. The distribution of genes in the genomes of Gramineae. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6857–6861. doi: 10.1073/pnas.94.13.6857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belzile F., Yoder J. I. Unstable transmission and frequent rearrangement of two closely linked transposed Ac elements in transgenic tomato. Genome. 1994 Oct;37(5):832–839. doi: 10.1139/g94-118. [DOI] [PubMed] [Google Scholar]
  3. Bennetzen J. L., Freeling M. The unified grass genome: synergy in synteny. Genome Res. 1997 Apr;7(4):301–306. doi: 10.1101/gr.7.4.301. [DOI] [PubMed] [Google Scholar]
  4. Bennetzen J. L., SanMiguel P., Chen M., Tikhonov A., Francki M., Avramova Z. Grass genomes. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1975–1978. doi: 10.1073/pnas.95.5.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernacchi D., Tanksley S. D. An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics. 1997 Oct;147(2):861–877. doi: 10.1093/genetics/147.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonierbale M. W., Plaisted R. L., Tanksley S. D. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics. 1988 Dec;120(4):1095–1103. doi: 10.1093/genetics/120.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caccone A., Min G. S., Powell J. R. Multiple origins of cytologically identical chromosome inversions in the Anopheles gambiae complex. Genetics. 1998 Oct;150(2):807–814. doi: 10.1093/genetics/150.2.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen M., SanMiguel P., de Oliveira A. C., Woo S. S., Zhang H., Wing R. A., Bennetzen J. L. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3431–3435. doi: 10.1073/pnas.94.7.3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Civardi L., Xia Y., Edwards K. J., Schnable P. S., Nikolau B. J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8268–8272. doi: 10.1073/pnas.91.17.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dooner H. K. Genetic Fine Structure of the BRONZE Locus in Maize. Genetics. 1986 Aug;113(4):1021–1036. doi: 10.1093/genetics/113.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dooner H. K., Martínez-Férez I. M. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell. 1997 Sep;9(9):1633–1646. doi: 10.1105/tpc.9.9.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eggleston W. B., Alleman M., Kermicle J. L. Molecular organization and germinal instability of R-stippled maize. Genetics. 1995 Sep;141(1):347–360. doi: 10.1093/genetics/141.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eggleston W. B., Rim N. R., Lim J. K. Molecular characterization of hobo-mediated inversions in Drosophila melanogaster. Genetics. 1996 Oct;144(2):647–656. doi: 10.1093/genetics/144.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engels W. R., Preston C. R. Formation of chromosome rearrangements by P factors in Drosophila. Genetics. 1984 Aug;107(4):657–678. doi: 10.1093/genetics/107.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  16. Flavell A. J., Smith D. B., Kumar A. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet. 1992 Jan;231(2):233–242. doi: 10.1007/BF00279796. [DOI] [PubMed] [Google Scholar]
  17. Flavell R. B., Bennett M. D., Smith J. B., Smith D. B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974 Oct;12(4):257–269. doi: 10.1007/BF00485947. [DOI] [PubMed] [Google Scholar]
  18. Gale M. D., Devos K. M. Plant comparative genetics after 10 years. Science. 1998 Oct 23;282(5389):656–659. doi: 10.1126/science.282.5389.656. [DOI] [PubMed] [Google Scholar]
  19. Hulbert S. H., Richter T. E., Axtell J. D., Bennetzen J. L. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4251–4255. doi: 10.1073/pnas.87.11.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim J. M., Vanguri S., Boeke J. D., Gabriel A., Voytas D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998 May;8(5):464–478. doi: 10.1101/gr.8.5.464. [DOI] [PubMed] [Google Scholar]
  21. Kowalski S. P., Lan T. H., Feldmann K. A., Paterson A. H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics. 1994 Oct;138(2):499–510. doi: 10.1093/genetics/138.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ladevèze V., Aulard S., Chaminade N., Périquet G., Lemeunier F. Hobo transposons causing chromosomal breakpoints. Proc Biol Sci. 1998 Jul 7;265(1402):1157–1159. doi: 10.1098/rspb.1998.0412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics. 1998 Nov;150(3):1217–1228. doi: 10.1093/genetics/150.3.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lefebvre V., Palloix A., Caranta C., Pochard E. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome. 1995 Feb;38(1):112–121. doi: 10.1139/g95-014. [DOI] [PubMed] [Google Scholar]
  25. Lim J. K. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9153–9157. doi: 10.1073/pnas.85.23.9153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lyttle T. W., Haymer D. S. The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica. 1992;86(1-3):113–126. doi: 10.1007/BF00133715. [DOI] [PubMed] [Google Scholar]
  27. Mathiopoulos K. D., della Torre A., Predazzi V., Petrarca V., Coluzzi M. Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12444–12449. doi: 10.1073/pnas.95.21.12444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Merrill C., Bayraktaroglu L., Kusano A., Ganetzky B. Truncated RanGAP encoded by the Segregation Distorter locus of Drosophila. Science. 1999 Mar 12;283(5408):1742–1745. doi: 10.1126/science.283.5408.1742. [DOI] [PubMed] [Google Scholar]
  29. Moore G., Roberts M., Aragon-Alcaide L., Foote T. Centromeric sites and cereal chromosome evolution. Chromosoma. 1997 Apr;105(6):321–323. doi: 10.1007/BF02529746. [DOI] [PubMed] [Google Scholar]
  30. O'Hare K., Tam J. L., Lim J. K., Yurchenko N. N., Zakharov I. K. Rearrangements at a hobo element inserted into the first intron of the singed gene in the unstable sn49 system of Drosophila melanogaster. Mol Gen Genet. 1998 Feb;257(4):452–460. doi: 10.1007/s004380050669. [DOI] [PubMed] [Google Scholar]
  31. Panstruga R., Büschges R., Piffanelli P., Schulze-Lefert P. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 1998 Feb 15;26(4):1056–1062. doi: 10.1093/nar/26.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peterhans A., Schlüpmann H., Basse C., Paszkowski J. Intrachromosomal recombination in plants. EMBO J. 1990 Nov;9(11):3437–3445. doi: 10.1002/j.1460-2075.1990.tb07551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pozueta-Romero J., Klein M., Houlné G., Schantz M. L., Meyer B., Schantz R. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Mol Biol. 1995 Sep;28(6):1011–1025. doi: 10.1007/BF00032663. [DOI] [PubMed] [Google Scholar]
  35. Presting G. G., Frary A., Pillen K., Tanksley S. D. Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet. 1996 Jul 19;251(5):526–531. doi: 10.1007/BF02173641. [DOI] [PubMed] [Google Scholar]
  36. Prince J. P., Lackney V. K., Angeles C., Blauth J. R., Kyle M. M. A survey of DNA polymorphism within the genus Capsicum and the fingerprinting of pepper cultivars. Genome. 1995 Apr;38(2):224–231. doi: 10.1139/g95-027. [DOI] [PubMed] [Google Scholar]
  37. Prince J. P., Pochard E., Tanksley S. D. Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome. 1993 Jun;36(3):404–417. doi: 10.1139/g93-056. [DOI] [PubMed] [Google Scholar]
  38. Robbins T. P., Carpenter R., Coen E. S. A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus. EMBO J. 1989 Jan;8(1):5–13. doi: 10.1002/j.1460-2075.1989.tb03342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  40. Sheen F., Lim J. K., Simmons M. J. Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics. 1993 Feb;133(2):315–334. doi: 10.1093/genetics/133.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tanksley S. D., Bernatzky R., Lapitan N. L., Prince J. P. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6419–6423. doi: 10.1073/pnas.85.17.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. deVicente M. C., Tanksley S. D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993 Jun;134(2):585–596. doi: 10.1093/genetics/134.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES