Abstract
A method has been developed for the microscale determination of 5,6-dihydrouridine, the most common post-transcriptional modification in bacterial and eukaryotic tRNA. The method is based on stable isotope dilution liquid chromatography-mass spectrometry (LC/MS) using [1,3-15N2]dihydrouridine and [1,3-15N2]uridine as internal standards. RNA samples were enzymatically digested to nucleosides before addition of the internal standards and subsequently analyzed by LC/MS with selected ion monitoring of protonated molecular ions of the labeled and unlabeled nucleosides. Sample quantities of approximately 1 pmol tRNA and 5 pmol 23S rRNA were analyzed for mole% dihydrouridine. Dihydrouridine content of Escherichia coli tRNASer(VGA) and tRNAThr(GGU) as controls were measured as 2.03 and 2.84 residues/tRNA molecule, representing accuracies of 98 and 95%. Overall precision values for the analyses of E. coli tRNASer(VGA) and E. coli tRNAThr(GGU), unfractionated tRNA from E. coli and 23S rRNA from E. coli were within the range 0.43-2.4%. The mole% dihydrouridine in unfractionated tRNA and 23S rRNA from E. coli were determined as 1.79 and 0.0396%, corresponding to 1.4 and 1.1 residues/RNA molecule respectively.
Full Text
The Full Text of this article is available as a PDF (56.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benson D. A., Boguski M., Lipman D. J., Ostell J. GenBank. Nucleic Acids Res. 1996 Jan 1;24(1):1–5. doi: 10.1093/nar/24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
- Cerutti P., Holt J. W., Miller N. Detection and determination of 5,6-dihydrouridine and 4-thiouridine in transfer ribonucleic acid from different sources. J Mol Biol. 1968 Jun 28;34(3):505–518. doi: 10.1016/0022-2836(68)90176-9. [DOI] [PubMed] [Google Scholar]
- Crain P. F., McCloskey J. A. Analysis of modified bases in DNA by stable isotope dilution gas chromatography-mass spectrometry: 5-methylcytosine. Anal Biochem. 1983 Jul 1;132(1):124–131. doi: 10.1016/0003-2697(83)90434-7. [DOI] [PubMed] [Google Scholar]
- Crain P. F., McCloskey J. A. The RNA modification database. Nucleic Acids Res. 1996 Jan 1;24(1):98–99. doi: 10.1093/nar/24.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crain P. F. Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods Enzymol. 1990;193:782–790. doi: 10.1016/0076-6879(90)93450-y. [DOI] [PubMed] [Google Scholar]
- Dalluge J. J., Hashizume T., Sopchik A. E., McCloskey J. A., Davis D. R. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res. 1996 Mar 15;24(6):1073–1079. doi: 10.1093/nar/24.6.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991 May;173(10):3138–3148. doi: 10.1128/jb.173.10.3138-3148.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garland W. A., Powell M. L. Quantitative selected ion monitoring (QSIM) of drugs and/or drug metabolites in biological matrices. J Chromatogr Sci. 1981 Aug;19(8):392–434. doi: 10.1093/chromsci/19.8.392. [DOI] [PubMed] [Google Scholar]
- Gehrke C. W., Kuo K. C. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr. 1989 Jun 2;471:3–36. doi: 10.1016/s0021-9673(00)94152-9. [DOI] [PubMed] [Google Scholar]
- Gommers-Ampt J. H., Borst P. Hypermodified bases in DNA. FASEB J. 1995 Aug;9(11):1034–1042. doi: 10.1096/fasebj.9.11.7649402. [DOI] [PubMed] [Google Scholar]
- Grosjean H., Sprinzl M., Steinberg S. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995;77(1-2):139–141. doi: 10.1016/0300-9084(96)88117-x. [DOI] [PubMed] [Google Scholar]
- Hanze A. R. Nucleic acids. IV. The catalytic reduction of pyrimidine nucleosides (human liver deaminase inhibitors). J Am Chem Soc. 1967 Dec 6;89(25):6720–6725. doi: 10.1021/ja01001a057. [DOI] [PubMed] [Google Scholar]
- Jacobson M., Hedgcoth C. Determination of 5,6-dihydrouridine in ribonucleic acid. Anal Biochem. 1970 Apr;34(2):459–469. doi: 10.1016/0003-2697(70)90130-2. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Horowitz J. Characterization of ribosomes and RNAs from Mycoplasma hominis. Biochim Biophys Acta. 1971 Oct 14;247(2):262–279. doi: 10.1016/0005-2787(71)90675-7. [DOI] [PubMed] [Google Scholar]
- Kowalak J. A., Bruenger E., McCloskey J. A. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem. 1995 Jul 28;270(30):17758–17764. doi: 10.1074/jbc.270.30.17758. [DOI] [PubMed] [Google Scholar]
- Kowalak J. A., Pomerantz S. C., Crain P. F., McCloskey J. A. A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res. 1993 Sep 25;21(19):4577–4585. doi: 10.1093/nar/21.19.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MADISON J. T., HOLLEY R. W. THE PRESENCE OF 5,6-DIHYDROURIDYLIC ACID IN YEAST "SOLUBLE" RIBONUCLEIC ACID. Biochem Biophys Res Commun. 1965 Jan 18;18:153–157. doi: 10.1016/0006-291x(65)90732-1. [DOI] [PubMed] [Google Scholar]
- Magrath D. I., Shaw D. C. The occurrence and source of beta-alanine in alkaline hydrolysates of sRNA: a sensitive method for the detection and assay of 5,6-dihydrouracil residues in RNA. Biochem Biophys Res Commun. 1967 Jan 10;26(1):32–37. doi: 10.1016/0006-291x(67)90248-3. [DOI] [PubMed] [Google Scholar]
- Molinaro M., Sheiner L. B., Neelon F. A., Cantoni G. L. Effect of chemical modification of dihydrouridine in yeast transfer ribonucleic acid on amino acid acceptor activity and ribosomal binding. J Biol Chem. 1968 Mar 25;243(6):1277–1282. [PubMed] [Google Scholar]
- Pomerantz S. C., McCloskey J. A. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol. 1990;193:796–824. doi: 10.1016/0076-6879(90)93452-q. [DOI] [PubMed] [Google Scholar]
- Randerath K., Gupta R. C., Randerath E. 3H and 32P derivative methods for base composition and sequence analysis of RNA. Methods Enzymol. 1980;65(1):638–680. doi: 10.1016/s0076-6879(80)65065-4. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]