Skip to main content
Genetics logoLink to Genetics
. 1999 Jul;152(3):1137–1172. doi: 10.1093/genetics/152.3.1137

A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map.

G L Davis 1, M D McMullen 1, C Baysdorfer 1, T Musket 1, D Grant 1, M Staebell 1, G Xu 1, M Polacco 1, L Koster 1, S Melia-Hancock 1, K Houchins 1, S Chao 1, E H Coe Jr 1
PMCID: PMC1460676  PMID: 10388831

Abstract

We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits.

Full Text

The Full Text of this article is available as a PDF (501.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Austin D. F., Lee M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome. 1996 Oct;39(5):957–968. doi: 10.1139/g96-120. [DOI] [PubMed] [Google Scholar]
  3. Bennetzen J. L., Freeling M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 1993 Aug;9(8):259–261. doi: 10.1016/0168-9525(93)90001-x. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983;100:243–255. doi: 10.1016/0076-6879(83)00059-2. [DOI] [PubMed] [Google Scholar]
  5. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  6. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Causse M., Santoni S., Damerval C., Maurice A., Charcosset A., Deatrick J., Vienne D. A composite map of expressed sequences in maize. Genome. 1996 Apr;39(2):418–432. doi: 10.1139/g96-053. [DOI] [PubMed] [Google Scholar]
  8. Cox D. R., Burmeister M., Price E. R., Kim S., Myers R. M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science. 1990 Oct 12;250(4978):245–250. doi: 10.1126/science.2218528. [DOI] [PubMed] [Google Scholar]
  9. Damerval C., Maurice A., Josse J. M., de Vienne D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics. 1994 May;137(1):289–301. doi: 10.1093/genetics/137.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delseny M., Cooke R., Raynal M., Grellet F. The Arabidopsis thaliana cDNA sequencing projects. FEBS Lett. 1997 Mar 24;405(2):129–132. doi: 10.1016/s0014-5793(97)00184-1. [DOI] [PubMed] [Google Scholar]
  11. Frova C., Sari-Gorla M. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol Gen Genet. 1994 Nov 15;245(4):424–430. doi: 10.1007/BF00302254. [DOI] [PubMed] [Google Scholar]
  12. Gardiner J. M., Coe E. H., Melia-Hancock S., Hoisington D. A., Chao S. Development of a core RFLP map in maize using an immortalized F2 population. Genetics. 1993 Jul;134(3):917–930. doi: 10.1093/genetics/134.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. doi: 10.1093/genetics/148.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hulbert S. H., Richter T. E., Axtell J. D., Bennetzen J. L. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4251–4255. doi: 10.1073/pnas.87.11.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keith C. S., Hoang D. O., Barrett B. M., Feigelman B., Nelson M. C., Thai H., Baysdorfer C. Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol. 1993 Jan;101(1):329–332. doi: 10.1104/pp.101.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kurata N., Nagamura Y., Yamamoto K., Harushima Y., Sue N., Wu J., Antonio B. A., Shomura A., Shimizu T., Lin S. Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet. 1994 Dec;8(4):365–372. doi: 10.1038/ng1294-365. [DOI] [PubMed] [Google Scholar]
  18. Nagamura Y., Antonio B. A., Sasaki T. Rice molecular genetic map using RFLPs and its applications. Plant Mol Biol. 1997 Sep;35(1-2):79–87. [PubMed] [Google Scholar]
  19. Nelson S. F., McCusker J. H., Sander M. A., Kee Y., Modrich P., Brown P. O. Genomic mismatch scanning: a new approach to genetic linkage mapping. Nat Genet. 1993 May;4(1):11–18. doi: 10.1038/ng0593-11. [DOI] [PubMed] [Google Scholar]
  20. Pè M. E., Gianfranceschi L., Taramino G., Tarchini R., Angelini P., Dani M., Binelli G. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol Gen Genet. 1993 Oct;241(1-2):11–16. doi: 10.1007/BF00280195. [DOI] [PubMed] [Google Scholar]
  21. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  23. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  24. Senior M. L., Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome. 1993 Oct;36(5):884–889. doi: 10.1139/g93-116. [DOI] [PubMed] [Google Scholar]
  25. Shalon D., Smith S. J., Brown P. O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996 Jul;6(7):639–645. doi: 10.1101/gr.6.7.639. [DOI] [PubMed] [Google Scholar]
  26. Stewart E. A., McKusick K. B., Aggarwal A., Bajorek E., Brady S., Chu A., Fang N., Hadley D., Harris M., Hussain S. An STS-based radiation hybrid map of the human genome. Genome Res. 1997 May;7(5):422–433. doi: 10.1101/gr.7.5.422. [DOI] [PubMed] [Google Scholar]
  27. Taramino G., Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome. 1996 Apr;39(2):277–287. doi: 10.1139/g96-038. [DOI] [PubMed] [Google Scholar]
  28. Weber D., Helentjaris T. Mapping RFLP loci in maize using B-A translocations. Genetics. 1989 Mar;121(3):583–590. doi: 10.1093/genetics/121.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamamoto K., Sasaki T. Large-scale EST sequencing in rice. Plant Mol Biol. 1997 Sep;35(1-2):135–144. [PubMed] [Google Scholar]
  31. Zachgo E. A., Wang M. L., Dewdney J., Bouchez D., Camilleri C., Belmonte S., Huang L., Dolan M., Goodman H. M. A physical map of chromosome 2 of Arabidopsis thaliana. Genome Res. 1996 Jan;6(1):19–25. doi: 10.1101/gr.6.1.19. [DOI] [PubMed] [Google Scholar]
  32. Zhang H. B., Wing R. A. Physical mapping of the rice genome with BACs. Plant Mol Biol. 1997 Sep;35(1-2):115–127. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES