Abstract
A maximum-likelihood method for the estimation of tetrad frequencies from single-spore data is presented. The multilocus exchange with interference and viability (MEIV) model incorporates a clearly defined model of exchange, interference, and viability whose parameters define a multinomial distribution for single-spore data. Maximum-likelihood analysis of the MEIV model (MEIVLA) allows point estimation of tetrad frequencies and determination of confidence intervals. We employ MEIVLA to determine tetrad frequencies among 15 X chromosomes sampled at random from Drosophila melanogaster natural populations in Africa and North America. Significant variation in the frequency of nonexchange, or E(0) tetrads, is observed within both natural populations. Because most nondisjunction arises from E(0) tetrads, this observation is quite unexpected given both the prevalence and the deleterious consequences of nondisjunction in D. melanogaster. Use of MEIVLA is also demonstrated by reanalyzing a recently published human chromosome 21 dataset. Analysis of simulated datasets demonstrates that MEIVLA is superior to previous methods of tetrad frequency estimation and is particularly well suited to analyze samples where the E(0) tetrad frequency is low and sample sizes are small, conditions likely to be met in most samples from human populations. We discuss the implications of our analysis for determining whether an achiasmate system exists in humans to ensure the proper segregation of E(0) tetrads.
Full Text
The Full Text of this article is available as a PDF (259.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afshar K., Barton N. R., Hawley R. S., Goldstein L. S. DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell. 1995 Apr 7;81(1):129–138. doi: 10.1016/0092-8674(95)90377-1. [DOI] [PubMed] [Google Scholar]
- Afshar K., Scholey J., Hawley R. S. Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Cell Biol. 1995 Nov;131(4):833–843. doi: 10.1083/jcb.131.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
- Bugge M., Collins A., Petersen M. B., Fisher J., Brandt C., Hertz J. M., Tranebjaerg L., de Lozier-Blanchet C., Nicolaides P., Brøndum-Nielsen K. Non-disjunction of chromosome 18. Hum Mol Genet. 1998 Apr;7(4):661–669. doi: 10.1093/hmg/7.4.661. [DOI] [PubMed] [Google Scholar]
- Carpenter A. T. A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics. 1973 Mar;73(3):393–428. doi: 10.1093/genetics/73.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper K W. Normal Segregation without Chiasmata in Female Drosophila Melanogaster. Genetics. 1945 Sep;30(5):472–484. doi: 10.1093/genetics/30.5.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson D. S., Murray A. W., Szostak J. W. An alternative pathway for meiotic chromosome segregation in yeast. Science. 1986 Nov 7;234(4777):713–717. doi: 10.1126/science.3535068. [DOI] [PubMed] [Google Scholar]
- Guacci V., Kaback D. B. Distributive disjunction of authentic chromosomes in Saccharomyces cerevisiae. Genetics. 1991 Mar;127(3):475–488. doi: 10.1093/genetics/127.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassold T., Abruzzo M., Adkins K., Griffin D., Merrill M., Millie E., Saker D., Shen J., Zaragoza M. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen. 1996;28(3):167–175. doi: 10.1002/(SICI)1098-2280(1996)28:3<167::AID-EM2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., Irick H., Zitron A. E., Haddox D. A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. doi: 10.1002/dvg.1020130608. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., McKim K. S., Arbel T. Meiotic segregation in Drosophila melanogaster females: molecules, mechanisms, and myths. Annu Rev Genet. 1993;27:281–317. doi: 10.1146/annurev.ge.27.120193.001433. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., Theurkauf W. E. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 1993 Sep;9(9):310–317. doi: 10.1016/0168-9525(93)90249-h. [DOI] [PubMed] [Google Scholar]
- Hollocher H., Ting C. T., Wu M. L., Wu C. I. Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement. Genetics. 1997 Nov;147(3):1191–1201. doi: 10.1093/genetics/147.3.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koehler K. E., Boulton C. L., Collins H. E., French R. L., Herman K. C., Lacefield S. M., Madden L. D., Schuetz C. D., Hawley R. S. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet. 1996 Dec;14(4):406–414. doi: 10.1038/ng1296-406. [DOI] [PubMed] [Google Scholar]
- Lamb N. E., Feingold E., Savage A., Avramopoulos D., Freeman S., Gu Y., Hallberg A., Hersey J., Karadima G., Pettay D. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet. 1997 Sep;6(9):1391–1399. doi: 10.1093/hmg/6.9.1391. [DOI] [PubMed] [Google Scholar]
- Lamb N. E., Freeman S. B., Savage-Austin A., Pettay D., Taft L., Hersey J., Gu Y., Shen J., Saker D., May K. M. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet. 1996 Dec;14(4):400–405. doi: 10.1038/ng1296-400. [DOI] [PubMed] [Google Scholar]
- Loidl J., Scherthan H., Kaback D. B. Physical association between nonhomologous chromosomes precedes distributive disjunction in yeast. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):331–334. doi: 10.1073/pnas.91.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MERRIAM J. R., FROST J. N. EXCHANGE AND NONDISJUNCTION OF THE X CHROMOSOMES IN FEMALE DROSOPHILA MELANOGASTER. Genetics. 1964 Jan;49:109–122. doi: 10.1093/genetics/49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPeek M. S., Speed T. P. Modeling interference in genetic recombination. Genetics. 1995 Feb;139(2):1031–1044. doi: 10.1093/genetics/139.2.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyashita N. T., Aguadé M., Langley C. H. Linkage disequilibrium in the white locus region of Drosophila melanogaster. Genet Res. 1993 Oct;62(2):101–109. doi: 10.1017/s0016672300031694. [DOI] [PubMed] [Google Scholar]
- Nicklas R. B. Chromosome distribution: experiments on cell hybrids and in vitro. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):267–276. doi: 10.1098/rstb.1977.0017. [DOI] [PubMed] [Google Scholar]
- Rasooly R. S., New C. M., Zhang P., Hawley R. S., Baker B. S. The lethal(1)TW-6cs mutation of Drosophila melanogaster is a dominant antimorphic allele of nod and is associated with a single base change in the putative ATP-binding domain. Genetics. 1991 Oct;129(2):409–422. doi: 10.1093/genetics/129.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasooly R. S., Zhang P., Tibolla A. K., Hawley R. S. A structure-function analysis of NOD, a kinesin-like protein from Drosophila melanogaster. Mol Gen Genet. 1994 Jan;242(2):145–151. doi: 10.1007/BF00391007. [DOI] [PubMed] [Google Scholar]
- Robinson W. P., Kuchinka B. D., Bernasconi F., Petersen M. B., Schulze A., Brondum-Nielsen K., Christian S. L., Ledbetter D. H., Schinzel A. A., Horsthemke B. Maternal meiosis I non-disjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Hum Mol Genet. 1998 Jun;7(6):1011–1019. doi: 10.1093/hmg/7.6.1011. [DOI] [PubMed] [Google Scholar]
- Rutherford S. L., Carpenter A. T. The effect of sequence homozygosity on the frequency of X-chromosomal exchange in Drosophila melanogaster females. Genetics. 1988 Nov;120(3):725–732. doi: 10.1093/genetics/120.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler L., Lindsley D. L., Nicoletti B., Trippa G. Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics. 1968 Nov;60(3):525–558. doi: 10.1093/genetics/60.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snow R. Maximum likelihood estimation of linkage and interference from tetrad data. Genetics. 1979 May;92(1):231–245. doi: 10.1093/genetics/92.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki D. T., Baillie D., Parry D. The Origin of Multiple Crossover Chromatids in Short Genetic Intervals in DROSOPHILA MELANOGASTER. Genetics. 1966 Dec;54(6):1359–1370. doi: 10.1093/genetics/54.6.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokai N., Fujimoto-Nishiyama A., Toyoshima Y., Yonemura S., Tsukita S., Inoue J., Yamamota T. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J. 1996 Feb 1;15(3):457–467. [PMC free article] [PubMed] [Google Scholar]
- WEINSTEIN A. The geometry and mechanics of crossing over. Cold Spring Harb Symp Quant Biol. 1958;23:177–196. doi: 10.1101/sqb.1958.023.01.022. [DOI] [PubMed] [Google Scholar]
- WEINSTEIN A. Unraveling the chromosomes. J Cell Physiol Suppl. 1955 May;45(Suppl 2):249–269. doi: 10.1002/jcp.1030450515. [DOI] [PubMed] [Google Scholar]
- Weinstein A. The Theory of Multiple-Strand Crossing over. Genetics. 1936 May;21(3):155–199. doi: 10.1093/genetics/21.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whyte W. L., Irick H., Arbel T., Yasuda G., French R. L., Falk D. R., Hawley R. S. The genetic analysis of achiasmate segregation in Drosophila melanogaster. III. The wild-type product of the Axs gene is required for the meiotic segregation of achiasmate homologs. Genetics. 1993 Jul;134(3):825–835. doi: 10.1093/genetics/134.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C. I., Hollocher H., Begun D. J., Aquadro C. F., Xu Y., Wu M. L. Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2519–2523. doi: 10.1073/pnas.92.7.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Hawley R. S. The genetic analysis of distributive segregation in Drosophila melanogaster. II. Further genetic analysis of the nod locus. Genetics. 1990 May;125(1):115–127. doi: 10.1093/genetics/125.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang P., Knowles B. A., Goldstein L. S., Hawley R. S. A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell. 1990 Sep 21;62(6):1053–1062. doi: 10.1016/0092-8674(90)90383-p. [DOI] [PubMed] [Google Scholar]
- Zhao H., McPeek M. S., Speed T. P. Statistical analysis of chromatid interference. Genetics. 1995 Feb;139(2):1057–1065. doi: 10.1093/genetics/139.2.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H., Speed T. P., McPeek M. S. Statistical analysis of crossover interference using the chi-square model. Genetics. 1995 Feb;139(2):1045–1056. doi: 10.1093/genetics/139.2.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H., Speed T. P. On genetic map functions. Genetics. 1996 Apr;142(4):1369–1377. doi: 10.1093/genetics/142.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H., Speed T. P. Statistical analysis of half-tetrads. Genetics. 1998 Sep;150(1):473–485. doi: 10.1093/genetics/150.1.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H., Speed T. P. Statistical analysis of ordered tetrads. Genetics. 1998 Sep;150(1):459–472. doi: 10.1093/genetics/150.1.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwick M. E., Salstrom J. L., Langley C. H. Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics. 1999 Aug;152(4):1605–1614. doi: 10.1093/genetics/152.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]