Abstract
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 619 F(2) animals and their parents were typed for molecular markers covering the entire porcine genome. Associations were studied between these markers and two fatness traits: intramuscular fat content and backfat thickness. Association analyses were performed using interval mapping by regression under two genetic models: (1) an outbred line-cross model where the founder lines were assumed to be fixed for different QTL alleles; and (2) a half-sib model where a unique allele substitution effect was fitted within each of the 19 half-sib families. Both approaches revealed for backfat thickness a highly significant QTL on chromosome 7 and suggestive evidence for a QTL at chromosome 2. Furthermore, suggestive QTL affecting backfat thickness were detected on chromosomes 1 and 6 under the line-cross model. For intramuscular fat content the line-cross approach showed suggestive evidence for QTL on chromosomes 2, 4, and 6, whereas the half-sib analysis showed suggestive linkage for chromosomes 4 and 7. The nature of the QTL effects and assumptions underlying both models could explain discrepancies between the findings under the two models. It is concluded that both approaches can complement each other in the analysis of data from outbred line crosses.
Full Text
The Full Text of this article is available as a PDF (161.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson L., Haley C. S., Ellegren H., Knott S. A., Johansson M., Andersson K., Andersson-Eklund L., Edfors-Lilja I., Fredholm M., Hansson I. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science. 1994 Mar 25;263(5154):1771–1774. doi: 10.1126/science.8134840. [DOI] [PubMed] [Google Scholar]
- Archibald A. L., Haley C. S., Brown J. F., Couperwhite S., McQueen H. A., Nicholson D., Coppieters W., Van de Weghe A., Stratil A., Winterø A. K. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome. 1995 Mar;6(3):157–175. doi: 10.1007/BF00293008. [DOI] [PubMed] [Google Scholar]
- Bink M. C., Van Arendonk J. A. Detection of quantitative trait loci in outbred populations with incomplete marker data. Genetics. 1999 Jan;151(1):409–420. doi: 10.1093/genetics/151.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carver E. A., Stubbs L. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res. 1997 Dec;7(12):1123–1137. doi: 10.1101/gr.7.12.1123. [DOI] [PubMed] [Google Scholar]
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauguier D., Froguel P., Parent V., Bernard C., Bihoreau M. T., Portha B., James M. R., Penicaud L., Lathrop M., Ktorza A. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet. 1996 Jan;12(1):38–43. doi: 10.1038/ng0196-38. [DOI] [PubMed] [Google Scholar]
- Goureau A., Yerle M., Schmitz A., Riquet J., Milan D., Pinton P., Frelat G., Gellin J. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics. 1996 Sep 1;36(2):252–262. doi: 10.1006/geno.1996.0460. [DOI] [PubMed] [Google Scholar]
- Graves J. A. Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet. 1996;30:233–260. doi: 10.1146/annurev.genet.30.1.233. [DOI] [PubMed] [Google Scholar]
- Groenen M. A., de Vries B. J., van der Poel J. J. Alignment of the PiGMaP and USDA linkage maps of porcine chromosomes 3 and 9. Anim Genet. 1996 Oct;27(5):355–357. doi: 10.1111/j.1365-2052.1996.tb00978.x. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janss L. L., Van Arendonk J. A., Brascamp E. W. Segregation analyses for presence of major genes affecting growth, backfat, and litter size in Dutch Meishan crossbreds. J Anim Sci. 1997 Nov;75(11):2864–2876. doi: 10.2527/1997.75112864x. [DOI] [PubMed] [Google Scholar]
- Janss L. L., van Arendonk J. A., Brascamp E. W. Bayesian statistical analyses for presence of single genes affecting meat quality traits in a crossed pig population. Genetics. 1997 Feb;145(2):395–408. doi: 10.1093/genetics/145.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansson M., Ellegren H., Andersson L. Comparative mapping reveals extensive linkage conservation--but with gene order rearrangements--between the pig and the human genomes. Genomics. 1995 Feb 10;25(3):682–690. doi: 10.1016/0888-7543(95)80011-a. [DOI] [PubMed] [Google Scholar]
- Knott S. A., Marklund L., Haley C. S., Andersson K., Davies W., Ellegren H., Fredholm M., Hansson I., Hoyheim B., Lundström K. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics. 1998 Jun;149(2):1069–1080. doi: 10.1093/genetics/149.2.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
- Rohrer G. A., Alexander L. J., Hu Z., Smith T. P., Keele J. W., Beattie C. W. A comprehensive map of the porcine genome. Genome Res. 1996 May;6(5):371–391. doi: 10.1101/gr.6.5.371. [DOI] [PubMed] [Google Scholar]
- Rohrer G. A., Keele J. W. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J Anim Sci. 1998 Sep;76(9):2247–2254. doi: 10.2527/1998.7692247x. [DOI] [PubMed] [Google Scholar]
- Spelman R. J., Coppieters W., Karim L., van Arendonk J. A., Bovenhuis H. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spelman R. J., Coppieters W., Karim L., van Arendonk J. A., Bovenhuis H. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vilkki H. J., de Koning D. J., Elo K., Velmala R., Mäki-Tanila A. Multiple marker mapping of quantitative trait loci of Finnish dairy cattle by regression. J Dairy Sci. 1997 Jan;80(1):198–204. doi: 10.3168/jds.S0022-0302(97)75928-9. [DOI] [PubMed] [Google Scholar]
- Warden C. H., Fisler J. S., Shoemaker S. M., Wen P. Z., Svenson K. L., Pace M. J., Lusis A. J. Identification of four chromosomal loci determining obesity in a multifactorial mouse model. J Clin Invest. 1995 Apr;95(4):1545–1552. doi: 10.1172/JCI117827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West D. B., Goudey-Lefevre J., York B., Truett G. E. Dietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J Clin Invest. 1994 Oct;94(4):1410–1416. doi: 10.1172/JCI117477. [DOI] [PMC free article] [PubMed] [Google Scholar]