Skip to main content
Genetics logoLink to Genetics
. 1999 Aug;152(4):1269–1276. doi: 10.1093/genetics/152.4.1269

Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma.

D Tumbula 1, U C Vothknecht 1, H S Kim 1, M Ibba 1, B Min 1, T Li 1, J Pelaschier 1, C Stathopoulos 1, H Becker 1, D Söll 1
PMCID: PMC1460689  PMID: 10430557

Abstract

Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not.

Full Text

The Full Text of this article is available as a PDF (82.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barns S. M., Delwiche C. F., Palmer J. D., Pace N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9188–9193. doi: 10.1073/pnas.93.17.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker H. D., Kern D. Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12832–12837. doi: 10.1073/pnas.95.22.12832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  4. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  5. Curnow A. W., Hong K. w., Yuan R., Kim S. i., Martins O., Winkler W., Henkin T. M., Söll D. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11819–11826. doi: 10.1073/pnas.94.22.11819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curnow A. W., Ibba M., Söll D. tRNA-dependent asparagine formation. Nature. 1996 Aug 15;382(6592):589–590. doi: 10.1038/382589b0. [DOI] [PubMed] [Google Scholar]
  7. Curnow A. W., Tumbula D. L., Pelaschier J. T., Min B., Söll D. Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12838–12843. doi: 10.1073/pnas.95.22.12838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cusack S., Yaremchuk A., Tukalo M. The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 1996 Jun 3;15(11):2834–2842. [PMC free article] [PubMed] [Google Scholar]
  9. Diaz-Lazcoz Y., Aude J. C., Nitschké P., Chiapello H., Landès-Devauchelle C., Risler J. L. Evolution of genes, evolution of species: the case of aminoacyl-tRNA synthetases. Mol Biol Evol. 1998 Nov;15(11):1548–1561. doi: 10.1093/oxfordjournals.molbev.a025882. [DOI] [PubMed] [Google Scholar]
  10. Doolittle R. F., Handy J. Evolutionary anomalies among the aminoacyl-tRNA synthetases. Curr Opin Genet Dev. 1998 Dec;8(6):630–636. doi: 10.1016/s0959-437x(98)80030-0. [DOI] [PubMed] [Google Scholar]
  11. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  12. Fujiwara S., Lee S. G., Haruki M., Kanaya S., Takagi M., Imanaka T. Unusual enzyme characteristics of aspartyl-tRNA synthetase from hyperthermophilic archaeon Pyrococcus sp. KOD1. FEBS Lett. 1996 Sep 23;394(1):66–70. doi: 10.1016/0014-5793(96)00904-0. [DOI] [PubMed] [Google Scholar]
  13. Gagnon Y., Lacoste L., Champagne N., Lapointe J. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase. J Biol Chem. 1996 Jun 21;271(25):14856–14863. doi: 10.1074/jbc.271.25.14856. [DOI] [PubMed] [Google Scholar]
  14. Giritch A., Herbik A., Balzer H. J., Ganal M., Stephan U. W., Bäumlein H. A root-specific iron-regulated gene of tomato encodes a lysyl-tRNA-synthetase-like protein. Eur J Biochem. 1997 Mar 1;244(2):310–317. doi: 10.1111/j.1432-1033.1997.00310.x. [DOI] [PubMed] [Google Scholar]
  15. Griffiths E., Bayley S. T. Properties of transfer ribonucleic acid and aminoacyl transfer ribonucleic acid synthetases from an extremely halophilic bacterium. Biochemistry. 1969 Feb;8(2):541–551. doi: 10.1021/bi00830a013. [DOI] [PubMed] [Google Scholar]
  16. Gupta R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J Biol Chem. 1984 Aug 10;259(15):9461–9471. [PubMed] [Google Scholar]
  17. Ibba M., Bono J. L., Rosa P. A., Söll D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14383–14388. doi: 10.1073/pnas.94.26.14383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ibba M., Curnow A. W., Söll D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci. 1997 Feb;22(2):39–42. doi: 10.1016/s0968-0004(96)20033-7. [DOI] [PubMed] [Google Scholar]
  19. Ibba M., Losey H. C., Kawarabayasi Y., Kikuchi H., Bunjun S., Söll D. Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):418–423. doi: 10.1073/pnas.96.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ibba M., Morgan S., Curnow A. W., Pridmore D. R., Vothknecht U. C., Gardner W., Lin W., Woese C. R., Söll D. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science. 1997 Nov 7;278(5340):1119–1122. doi: 10.1126/science.278.5340.1119. [DOI] [PubMed] [Google Scholar]
  21. Jahn D., Kim Y. C., Ishino Y., Chen M. W., Söll D. Purification and functional characterization of the Glu-tRNA(Gln) amidotransferase from Chlamydomonas reinhardtii. J Biol Chem. 1990 May 15;265(14):8059–8064. [PubMed] [Google Scholar]
  22. Kawarabayasi Y., Sawada M., Horikawa H., Haikawa Y., Hino Y., Yamamoto S., Sekine M., Baba S., Kosugi H., Hosoyama A. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998 Apr 30;5(2):55–76. doi: 10.1093/dnares/5.2.55. [DOI] [PubMed] [Google Scholar]
  23. Kim H. S., Vothknecht U. C., Hedderich R., Celic I., Söll D. Sequence divergence of seryl-tRNA synthetases in archaea. J Bacteriol. 1998 Dec;180(24):6446–6449. doi: 10.1128/jb.180.24.6446-6449.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  25. Kobayashi M., Komeda H., Nagasawa T., Nishiyama M., Horinouchi S., Beppu T., Yamada H., Shimizu S. Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product. Eur J Biochem. 1993 Oct 1;217(1):327–336. doi: 10.1111/j.1432-1033.1993.tb18250.x. [DOI] [PubMed] [Google Scholar]
  26. LAZZARINI R. A., MEHLER A. H. SEPARATION OF SPECIFIC GLUTAMATE- AND GLUTAMINE-ACTIVATING ENZYMES FROM ESCHERICHIA COLI. Biochemistry. 1964 Oct;3:1445–1449. doi: 10.1021/bi00898a009. [DOI] [PubMed] [Google Scholar]
  27. Martin N. C., Rabinowitz M. Glu-tRNAGln: an intermediate in yeast mitochondrial protein synthesis. Methods Enzymol. 1984;106:152–157. doi: 10.1016/0076-6879(84)06014-6. [DOI] [PubMed] [Google Scholar]
  28. Nabholz C. E., Hauser R., Schneider A. Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7903–7908. doi: 10.1073/pnas.94.15.7903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rauhut R., Gabius H. J., Kühn W., Cramer F. Phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri. J Biol Chem. 1984 May 25;259(10):6340–6345. [PubMed] [Google Scholar]
  30. Sanni A., Walter P., Boulanger Y., Ebel J. P., Fasiolo F. Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8387–8391. doi: 10.1073/pnas.88.19.8387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schimmel P., Ribas de Pouplana L. Genetic code origins: experiments confirm phylogenetic predictions and may explain a puzzle. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):327–328. doi: 10.1073/pnas.96.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmitt E., Moulinier L., Fujiwara S., Imanaka T., Thierry J. C., Moras D. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 1998 Sep 1;17(17):5227–5237. doi: 10.1093/emboj/17.17.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schön A., Hottinger H., Söll D. Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus. Biochimie. 1988 Mar;70(3):391–394. doi: 10.1016/0300-9084(88)90212-x. [DOI] [PubMed] [Google Scholar]
  34. Schön A., Kannangara C. G., Gough S., Söll D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature. 1988 Jan 14;331(6152):187–190. doi: 10.1038/331187a0. [DOI] [PubMed] [Google Scholar]
  35. Siatecka M., Rozek M., Barciszewski J., Mirande M. Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Eur J Biochem. 1998 Aug 15;256(1):80–87. doi: 10.1046/j.1432-1327.1998.2560080.x. [DOI] [PubMed] [Google Scholar]
  36. Taupin C. M., Härtlein M., Leberman R. Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui--isolation, characterization and sequencing of the gene and its expression in Escherichia coli. Eur J Biochem. 1997 Jan 15;243(1-2):141–150. doi: 10.1111/j.1432-1033.1997.0141a.x. [DOI] [PubMed] [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
  39. White B. N., Bayley S. T. Further codon assignments in an extremely halophilic bacterium using a cell-free protein-synthesizing system and a ribosomal binding assay. Can J Biochem. 1972 Jun;50(6):600–609. doi: 10.1139/o72-082. [DOI] [PubMed] [Google Scholar]
  40. Wilcox M. Gamma-phosphoryl ester of glu-tRNA-GLN as an intermediate in Bacillus subtilis glutaminyl-tRNA synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:521–528. doi: 10.1101/sqb.1969.034.01.059. [DOI] [PubMed] [Google Scholar]
  41. Wilcox M., Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A. 1968 Sep;61(1):229–236. doi: 10.1073/pnas.61.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilting R., Schorling S., Persson B. C., Böck A. Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J Mol Biol. 1997 Mar 7;266(4):637–641. doi: 10.1006/jmbi.1996.0812. [DOI] [PubMed] [Google Scholar]
  43. Zalkin H., Smith J. L. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol. 1998;72:87–144. doi: 10.1002/9780470123188.ch4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES