Skip to main content
Genetics logoLink to Genetics
. 1999 Aug;152(4):1353–1361. doi: 10.1093/genetics/152.4.1353

Extragenic pleiotropic mutations that repress glycosyl hydrolase expression in the hyperthermophilic archaeon Sulfolobus solfataricus.

C Haseltine 1, R Montalvo-Rodriguez 1, A Carl 1, E Bini 1, P Blum 1
PMCID: PMC1460713  PMID: 10430566

Abstract

The hyperthermophilic archaeon Sulfolobus solfataricus employs a catabolite repression-like regulatory system to control enzymes involved in carbon and energy metabolism. To better understand the basis of this system, spontaneous glycosyl hydrolase mutants were isolated using a genetic screen for mutations, which reduced expression of the lacS gene. The specific activities of three glycosyl hydrolases, including an alpha-glucosidase (malA), a beta-glycosidase (lacS), and the major secreted alpha-amylase, were measured in the mutant strains using enzyme activity assays, Western blot analysis, and Northern blot analysis. On the basis of these results the mutants were divided into two classes. Group I mutants exhibited a pleiotropic defect in glycosyl hydrolase expression, while a single group II mutant was altered only in lacS expression. PCR, Southern blot analysis, comparative heterologous expression in Escherichia coli, and DNA sequence analysis excluded cis-acting mutations as the explanation for reduced lacS expression in group I mutants. In contrast lacS and flanking sequences were deleted in the group II mutant. Revertants were isolated from group I mutants using a lacS-specific screen and selection. These revertants were pleiotropic and restored glycosyl hydrolase activity either partially or completely to wild-type levels as indicated by enzyme assays and Western blots. The lacS mutation in the group II mutant, however, was nonrevertible. The existence of group I mutants and their revertants reveals the presence of a trans-acting transcriptional regulatory system for glycosyl hydrolase expression.

Full Text

The Full Text of this article is available as a PDF (223.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blum P., Ory J., Bauernfeind J., Krska J. Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol. 1992 Nov;174(22):7436–7444. doi: 10.1128/jb.174.22.7436-7444.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  4. Cannio R., Contursi P., Rossi M., Bartolucci S. An autonomously replicating transforming vector for Sulfolobus solfataricus. J Bacteriol. 1998 Jun;180(12):3237–3240. doi: 10.1128/jb.180.12.3237-3240.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cubellis M. V., Rozzo C., Montecucchi P., Rossi M. Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene. Gene. 1990 Sep 28;94(1):89–94. doi: 10.1016/0378-1119(90)90472-4. [DOI] [PubMed] [Google Scholar]
  6. Cubero B., Scazzocchio C. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 1994 Jan 15;13(2):407–415. doi: 10.1002/j.1460-2075.1994.tb06275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol. 1995 Mar;15(6):1049–1053. doi: 10.1111/j.1365-2958.1995.tb02280.x. [DOI] [PubMed] [Google Scholar]
  8. Gohl H. P., Gröndahl B., Thomm M. Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein. Nucleic Acids Res. 1995 Oct 11;23(19):3837–3841. doi: 10.1093/nar/23.19.3837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grogan D. W. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J Bacteriol. 1996 Jun;178(11):3207–3211. doi: 10.1128/jb.178.11.3207-3211.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haseltine C., Rolfsmeier M., Blum P. The glucose effect and regulation of alpha-amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1996 Feb;178(4):945–950. doi: 10.1128/jb.178.4.945-950.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. doi: 10.1111/j.1365-2958.1991.tb00728.x. [DOI] [PubMed] [Google Scholar]
  12. Jacobs K. L., Grogan D. W. Rates of spontaneous mutation in an archaeon from geothermal environments. J Bacteriol. 1997 May;179(10):3298–3303. doi: 10.1128/jb.179.10.3298-3303.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klenk H. P., Palm P., Lottspeich F., Zillig W. Component H of the DNA-dependent RNA polymerases of Archaea is homologous to a subunit shared by the three eucaryal nuclear RNA polymerases. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):407–410. doi: 10.1073/pnas.89.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsudaira P. Limited N-terminal sequence analysis. Methods Enzymol. 1990;182:602–613. doi: 10.1016/0076-6879(90)82047-6. [DOI] [PubMed] [Google Scholar]
  15. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  16. Qureshi S. A., Baumann P., Rowlands T., Khoo B., Jackson S. P. Cloning and functional analysis of the TATA binding protein from Sulfolobus shibatae. Nucleic Acids Res. 1995 May 25;23(10):1775–1781. doi: 10.1093/nar/23.10.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Qureshi S. A., Jackson S. P. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. Mol Cell. 1998 Feb;1(3):389–400. doi: 10.1016/s1097-2765(00)80039-8. [DOI] [PubMed] [Google Scholar]
  18. Reiter W. D., Hüdepohl U., Zillig W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9509–9513. doi: 10.1073/pnas.87.24.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rockabrand D., Arthur T., Korinek G., Livers K., Blum P. An essential role for the Escherichia coli DnaK protein in starvation-induced thermotolerance, H2O2 resistance, and reductive division. J Bacteriol. 1995 Jul;177(13):3695–3703. doi: 10.1128/jb.177.13.3695-3703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rockabrand D., Blum P. Multicopy plasmid suppression of stationary phase chaperone toxicity in Escherichia coli by phosphogluconate dehydratase and the N-terminus of DnaK. Mol Gen Genet. 1995 Dec 15;249(5):498–506. doi: 10.1007/BF00290575. [DOI] [PubMed] [Google Scholar]
  21. Rockabrand D., Livers K., Austin T., Kaiser R., Jensen D., Burgess R., Blum P. Roles of DnaK and RpoS in starvation-induced thermotolerance of Escherichia coli. J Bacteriol. 1998 Feb;180(4):846–854. doi: 10.1128/jb.180.4.846-854.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roesler W. J., Graham J. G., Kolen R., Klemm D. J., McFie P. J. The cAMP response element binding protein synergizes with other transcription factors to mediate cAMP responsiveness. J Biol Chem. 1995 Apr 7;270(14):8225–8232. doi: 10.1074/jbc.270.14.8225. [DOI] [PubMed] [Google Scholar]
  23. Rolfsmeier M., Blum P. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J Bacteriol. 1995 Jan;177(2):482–485. doi: 10.1128/jb.177.2.482-485.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rolfsmeier M., Haseltine C., Bini E., Clark A., Blum P. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1998 Mar;180(5):1287–1295. doi: 10.1128/jb.180.5.1287-1295.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rowlands T., Baumann P., Jackson S. P. The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. Science. 1994 May 27;264(5163):1326–1329. doi: 10.1126/science.8191287. [DOI] [PubMed] [Google Scholar]
  26. Schleper C., Röder R., Singer T., Zillig W. An insertion element of the extremely thermophilic archaeon Sulfolobus solfataricus transposes into the endogenous beta-galactosidase gene. Mol Gen Genet. 1994 Apr;243(1):91–96. doi: 10.1007/BF00283880. [DOI] [PubMed] [Google Scholar]
  27. Sensen C. W., Charlebois R. L., Chow C., Clausen I. G., Curtis B., Doolittle W. F., Duguet M., Erauso G., Gaasterland T., Garrett R. A. Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles. 1998 Aug;2(3):305–312. doi: 10.1007/s007920050073. [DOI] [PubMed] [Google Scholar]
  28. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yeats S., McWilliam P., Zillig W. A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J. 1982;1(9):1035–1038. doi: 10.1002/j.1460-2075.1982.tb01292.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Rosa M., Gambacorta A., Bu'lock J. D. Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol. 1975 Jan;86(1):156–164. doi: 10.1099/00221287-86-1-156. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES