Skip to main content
Genetics logoLink to Genetics
. 1999 Aug;152(4):1573–1584. doi: 10.1093/genetics/152.4.1573

Homologs of the Caenorhabditis elegans masculinizing gene her-1 in C. briggsae and the filarial parasite Brugia malayi.

A Streit 1, W Li 1, B Robertson 1, J Schein 1, I H Kamal 1, M Marra 1, W B Wood 1
PMCID: PMC1460716  PMID: 10430584

Abstract

The masculinizing gene her-1 in Caenorhabditis elegans (Ce-her-1) encodes a novel protein, HER-1A, which is required for male development. To identify conserved elements in her-1 we have cloned and characterized two homologous nematode genes: one by synteny from the closely related free-living species C. briggsae (Cb-her-1) and the other, starting with a fortuitously identified expressed sequence tag, from the distantly related parasite Brugia malayi (Bm-her-1). The overall sequence identities of the predicted gene products with Ce-HER-1A are only 57% for Cb-HER-1, which is considerably lower than has been found for most homologous briggsae genes, and 35% for Bm-HER-1. However, conserved residues are found throughout both proteins, and like Ce-HER-1A, both have putative N-terminal signal sequences. Ce-her-1 produces a larger masculinizing transcript (her-1a) and a smaller transcript of unknown function (her-1b); both are present essentially only in males. By contrast, Cb-her-1 appears to produce only one transcript, corresponding to her-1a; it is enriched in males but present also in hermaphrodites. Injection of dsRNA transcribed from Cb-her-1 into C. briggsae hermaphrodites (RNA interference) caused XO animals to develop into partially fertile hermaphrodites. Introducing a Cb-her-1 construct as a transgene under control of the C. elegans unc-54 myosin heavy chain promoter caused strong masculinization of both C. briggsae and C. elegans hermaphrodites. Introduction of a similar Bm-her-1 construct into C. elegans caused only very weak, if any, masculinization. We conclude that in spite of considerable divergence the Cb gene is likely to be a functional ortholog of Ce-her-1, while the function of the distantly related Bm gene remains uncertain.

Full Text

The Full Text of this article is available as a PDF (327.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cline T. W., Meyer B. J. Vive la différence: males vs females in flies vs worms. Annu Rev Genet. 1996;30:637–702. doi: 10.1146/annurev.genet.30.1.637. [DOI] [PubMed] [Google Scholar]
  4. Fire A., Harrison S. W., Dixon D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene. 1990 Sep 14;93(2):189–198. doi: 10.1016/0378-1119(90)90224-f. [DOI] [PubMed] [Google Scholar]
  5. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  6. Fitch D. H., Bugaj-Gaweda B., Emmons S. W. 18S ribosomal RNA gene phylogeny for some Rhabditidae related to Caenorhabditis. Mol Biol Evol. 1995 Mar;12(2):346–358. doi: 10.1093/oxfordjournals.molbev.a040207. [DOI] [PubMed] [Google Scholar]
  7. Hansen D., Pilgrim D. Molecular evolution of a sex determination protein. FEM-2 (pp2c) in Caenorhabditis. Genetics. 1998 Jul;149(3):1353–1362. doi: 10.1093/genetics/149.3.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hertz G. Z., Hartzell G. W., 3rd, Stormo G. D. Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci. 1990 Apr;6(2):81–92. doi: 10.1093/bioinformatics/6.2.81. [DOI] [PubMed] [Google Scholar]
  9. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hunter C. P., Wood W. B. Evidence from mosaic analysis of the masculinizing gene her-1 for cell interactions in C. elegans sex determination. Nature. 1992 Feb 6;355(6360):551–555. doi: 10.1038/355551a0. [DOI] [PubMed] [Google Scholar]
  11. Kuwabara P. E. Interspecies comparison reveals evolution of control regions in the nematode sex-determining gene tra-2. Genetics. 1996 Oct;144(2):597–607. doi: 10.1093/genetics/144.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuwabara P. E., Okkema P. G., Kimble J. Germ-line regulation of the Caenorhabditis elegans sex-determining gene tra-2. Dev Biol. 1998 Dec 1;204(1):251–262. doi: 10.1006/dbio.1998.9062. [DOI] [PubMed] [Google Scholar]
  13. Kuwabara P. E., Okkema P. G., Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Biol Cell. 1992 Apr;3(4):461–473. doi: 10.1091/mbc.3.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuwabara P. E., Shah S. Cloning by synteny: identifying C. briggsae homologues of C. elegans genes. Nucleic Acids Res. 1994 Oct 25;22(21):4414–4418. doi: 10.1093/nar/22.21.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li W., Streit A., Robertson B., Wood W. B. Evidence for multiple promoter elements orchestrating male-specific regulation of the her-1 gene in Caenorhabditis elegans. Genetics. 1999 May;152(1):237–248. doi: 10.1093/genetics/152.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marín I., Baker B. S. The evolutionary dynamics of sex determination. Science. 1998 Sep 25;281(5385):1990–1994. doi: 10.1126/science.281.5385.1990. [DOI] [PubMed] [Google Scholar]
  17. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Montgomery M. K., Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 1998 Jul;14(7):255–258. doi: 10.1016/s0168-9525(98)01510-8. [DOI] [PubMed] [Google Scholar]
  19. O'Neil M. T., Belote J. M. Interspecific comparison of the transformer gene of Drosophila reveals an unusually high degree of evolutionary divergence. Genetics. 1992 May;131(1):113–128. doi: 10.1093/genetics/131.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perry M. D., Li W., Trent C., Robertson B., Fire A., Hageman J. M., Wood W. B. Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination. Genes Dev. 1993 Feb;7(2):216–228. doi: 10.1101/gad.7.2.216. [DOI] [PubMed] [Google Scholar]
  21. Perry M. D., Trent C., Robertson B., Chamblin C., Wood W. B. Sequenced alleles of the Caenorhabditis elegans sex-determining gene her-1 include a novel class of conditional promoter mutations. Genetics. 1994 Oct;138(2):317–327. doi: 10.1093/genetics/138.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raymond C. S., Shamu C. E., Shen M. M., Seifert K. J., Hirsch B., Hodgkin J., Zarkower D. Evidence for evolutionary conservation of sex-determining genes. Nature. 1998 Feb 12;391(6668):691–695. doi: 10.1038/35618. [DOI] [PubMed] [Google Scholar]
  23. Ryner L. C., Swain A. Sex in the '90s. Cell. 1995 May 19;81(4):483–493. doi: 10.1016/0092-8674(95)90069-1. [DOI] [PubMed] [Google Scholar]
  24. Schwartz S., Miller W., Yang C. M., Hardison R. C. Software tools for analyzing pairwise alignments of long sequences. Nucleic Acids Res. 1991 Sep 11;19(17):4663–4667. doi: 10.1093/nar/19.17.4663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sulston J., Du Z., Thomas K., Wilson R., Hillier L., Staden R., Halloran N., Green P., Thierry-Mieg J., Qiu L. The C. elegans genome sequencing project: a beginning. Nature. 1992 Mar 5;356(6364):37–41. doi: 10.1038/356037a0. [DOI] [PubMed] [Google Scholar]
  26. Tsang S. S., Yin X., Guzzo-Arkuran C., Jones V. S., Davison A. J. Loss of resolution in gel electrophoresis of RNA: a problem associated with the presence of formaldehyde gradients. Biotechniques. 1993 Mar;14(3):380–381. [PubMed] [Google Scholar]
  27. Tucker P. K., Lundrigan B. L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature. 1993 Aug 19;364(6439):715–717. doi: 10.1038/364715a0. [DOI] [PubMed] [Google Scholar]
  28. Ventura-Holman T., Seldin M. F., Li W., Maher J. F. The murine fem1 gene family: homologs of the Caenorhabditis elegans sex-determination protein FEM-1. Genomics. 1998 Dec 1;54(2):221–230. doi: 10.1006/geno.1998.5569. [DOI] [PubMed] [Google Scholar]
  29. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES