Skip to main content
Genetics logoLink to Genetics
. 1999 Aug;152(4):1363–1372. doi: 10.1093/genetics/152.4.1363

Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea.

A Kraft 1, C Lutz 1, A Lingenhel 1, P Gröbner 1, W Piendl 1
PMCID: PMC1460717  PMID: 10430567

Abstract

The mechanisms for the control of ribosomal protein synthesis have been characterized in detail in Eukarya and in Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10, and MvaL12) of the mesophilic Methanococcus vannielii has been extensively investigated. As in Bacteria, regulation takes place at the level of translation. The regulator protein MvaL1 binds preferentially to its binding site on the 23S rRNA, and, when in excess, binds to the regulatory target site on its mRNA and thus inhibits translation of all three cistrons of the operon. The regulatory binding site on the mRNA, a structural mimic of the respective binding site on the 23S rRNA, is located within the structural gene about 30 nucleotides downstream of the ATG start codon. MvaL1 blocks a step before or at the formation of the first peptide bond of MvaL1. Here we demonstrate that a similar regulatory mechanism exists in the thermophilic M. thermolithotrophicus and M. jannaschii. The L1 gene is cotranscribed together with the L10 and L11 gene, in all genera of the Euryarchaeota branch of the Archaea studied so far. A potential regulatory L1 binding site located within the structural gene, as in Methanococcus, was found in Methanobacterium thermoautotrophicum and in Pyrococcus horikoshii. In contrast, in Archaeoglobus fulgidus a typical L1 binding site is located in the untranslated leader of the L1 gene as described for the halophilic Archaea. In Sulfolobus, a member of the Crenarchaeota, the L1 gene is part of a long transcript (encoding SecE, NusG, L11, L1, L10, L12). A previously suggested regulatory L1 target site located within the L11 structural gene could not be confirmed as an L1 binding site.

Full Text

The Full Text of this article is available as a PDF (209.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., van den Berg M., van Batenburg E., Pleij C. Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res. 1990 May 25;18(10):3035–3044. doi: 10.1093/nar/18.10.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell S. D., Jackson S. P. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 1998 Jun;6(6):222–228. doi: 10.1016/s0966-842x(98)01281-5. [DOI] [PubMed] [Google Scholar]
  3. Brinkmann U., Mattes R. E., Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene. 1989 Dec 21;85(1):109–114. doi: 10.1016/0378-1119(89)90470-8. [DOI] [PubMed] [Google Scholar]
  4. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  5. Calderone T. L., Stevens R. D., Oas T. G. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol. 1996 Oct 4;262(4):407–412. doi: 10.1006/jmbi.1996.0524. [DOI] [PubMed] [Google Scholar]
  6. Cammarano P., Mazzei F., Londei P., Teichner A., de Rosa M., Gambacorta A. Secondary structure features of ribosomal RNA species within intact ribosomal subunits and efficiency of RNA-protein interactions in thermoacidophilic (Caldariella acidophila, Bacillus acidocaldarius) and mesophilic (Escherichia coli) bacteria. Biochim Biophys Acta. 1983 Aug 2;740(3):300–312. doi: 10.1016/0167-4781(83)90139-2. [DOI] [PubMed] [Google Scholar]
  7. Dennis P. P. Ancient ciphers: translation in Archaea. Cell. 1997 Jun 27;89(7):1007–1010. doi: 10.1016/s0092-8674(00)80288-3. [DOI] [PubMed] [Google Scholar]
  8. Geiger M., Gröbner P., Piendl W. Nucleotide sequence of a gene cluster encoding NusG and the L11-L1-L10-L12 ribosomal proteins from the thermophilic archaeon Sulfolobus solfataricus. Biochim Biophys Acta. 1997 Jul 18;1340(2):170–177. doi: 10.1016/s0167-4838(97)00073-3. [DOI] [PubMed] [Google Scholar]
  9. Hanner M., Mayer C., Köhrer C., Golderer G., Gröbner P., Piendl W. Autogenous translational regulation of the ribosomal MvaL1 operon in the archaebacterium Methanococcus vannielii. J Bacteriol. 1994 Jan;176(2):409–418. doi: 10.1128/jb.176.2.409-418.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawarabayasi Y., Sawada M., Horikawa H., Haikawa Y., Hino Y., Yamamoto S., Sekine M., Baba S., Kosugi H., Hosoyama A. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3 (supplement). DNA Res. 1998 Apr 30;5(2):147–155. doi: 10.1093/dnares/5.2.147. [DOI] [PubMed] [Google Scholar]
  11. Kearney K. R., Nomura M. Secondary structure of the autoregulatory mRNA binding site of ribosomal protein L1. Mol Gen Genet. 1987 Nov;210(1):60–68. doi: 10.1007/BF00337759. [DOI] [PubMed] [Google Scholar]
  12. Köhrer C., Mayer C., Gröbner P., Piendl W. Use of T7 RNA polymerase in an optimized Escherichia coli coupled in vitro transcription-translation system. Application in regulatory studies and expression of long transcription units. Eur J Biochem. 1996 Feb 15;236(1):234–239. doi: 10.1111/j.1432-1033.1996.00234.x. [DOI] [PubMed] [Google Scholar]
  13. Köhrer C., Mayer C., Neumair O., Gröbner P., Piendl W. Interaction of ribosomal L1 proteins from mesophilic and thermophilic Archaea and Bacteria with specific L1-binding sites on 23S rRNA and mRNA. Eur J Biochem. 1998 Aug 15;256(1):97–105. doi: 10.1046/j.1432-1327.1998.2560097.x. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Matzura O., Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci. 1996 Jun;12(3):247–249. doi: 10.1093/bioinformatics/12.3.247. [DOI] [PubMed] [Google Scholar]
  16. Mayer C., Köhrer C., Gröbner P., Piendl W. MvaL1 autoregulates the synthesis of the three ribosomal proteins encoded on the MvaL1 operon of the archaeon Methanococcus vannielii by inhibiting its own translation before or at the formation of the first peptide bond. Mol Microbiol. 1998 Jan;27(2):455–468. doi: 10.1046/j.1365-2958.1998.00693.x. [DOI] [PubMed] [Google Scholar]
  17. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  18. Philippe C., Eyermann F., Bénard L., Portier C., Ehresmann B., Ehresmann C. Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4394–4398. doi: 10.1073/pnas.90.10.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramírez C., Shimmin L. C., Leggatt P., Matheson A. T. Structure and transcription of the L11-L1-L10-L12 ribosomal protein gene operon from the extreme thermophilic archaeon Sulfolobus acidocaldarius. J Mol Biol. 1994 Nov 25;244(2):242–249. doi: 10.1006/jmbi.1994.1723. [DOI] [PubMed] [Google Scholar]
  20. Reiter W. D., Hüdepohl U., Zillig W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9509–9513. doi: 10.1073/pnas.87.24.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Said B., Cole J. R., Nomura M. Mutational analysis of the L1 binding site of 23S rRNA in Escherichia coli. Nucleic Acids Res. 1988 Nov 25;16(22):10529–10545. doi: 10.1093/nar/16.22.10529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith D. R., Doucette-Stamm L. A., Deloughery C., Lee H., Dubois J., Aldredge T., Bashirzadeh R., Blakely D., Cook R., Gilbert K. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol. 1997 Nov;179(22):7135–7155. doi: 10.1128/jb.179.22.7135-7155.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  25. Thomas M. S., Nomura M. Translational regulation of the L11 ribosomal protein operon of Escherichia coli: mutations that define the target site for repression by L1. Nucleic Acids Res. 1987 Apr 10;15(7):3085–3096. doi: 10.1093/nar/15.7.3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tishchenko S., Nikonov S., Garber M., Kraft A., Köhrer C., Piendl W. Crystals of ribosomal protein L1 from a hyperthermophilic archaeon Methanococcus jannaschii. Biochem Mol Biol Int. 1998 Jun;45(2):349–354. doi: 10.1080/15216549800202722. [DOI] [PubMed] [Google Scholar]
  27. University of North Carolina at Chapel Hill. Institute for Research in Social Science Directory of social science researchers at UNC-CH 1984-85. Soc Sci New Lett. 1984 Autumn;69(4):129–179. [PubMed] [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  29. Zengel J. M., Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog Nucleic Acid Res Mol Biol. 1994;47:331–370. doi: 10.1016/s0079-6603(08)60256-1. [DOI] [PubMed] [Google Scholar]
  30. van Batenburg F. H., Gultyaev A. P., Pleij C. W. An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J Theor Biol. 1995 Jun 7;174(3):269–280. doi: 10.1006/jtbi.1995.0098. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES