Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Aug 15;24(16):3167–3172. doi: 10.1093/nar/24.16.3167

A functional role for some Fugu introns larger than the typical short ones: the example of the gene coding for ribosomal protein S7 and snoRNA U17.

F Cecconi 1, C Crosio 1, P Mariottini 1, G Cesareni 1, M Giorgi 1, S Brenner 1, F Amaldi 1
PMCID: PMC146072  PMID: 8774896

Abstract

The compact genome of Fugu rubripes, with its very small introns, appears to be particularly suitable to study intron-encoded functions. We have analyzed the Fugu gene for ribosomal protein S7 (formerly S8, see Note), whose Xenopus homolog contains in its introns the coding sequences for the small nucleolar RNA U17. Except for intron length, the organization of the Fugu S7 gene is very similar to that of the Xenopus counterpart. The total length of the Fugu S7 gene is 3930 bp, compared with 12691 bp for Xenopus. This length difference is uniquely due to smaller introns. Although short, the six introns are longer than the approximately 100 bp size of most Fugu introns, as they host U17 RNA coding sequences. While four of the six U17 sequences are 'canonical', the remaining two represent diverged U17 pseudocopies. In fact, microinjection in Xenopus oocytes of in vitro synthesized Fugu transcripts containing the 'canonical' U17f sequence results in efficient production of mature U17 RNA, while injection of a transcript containing the U17 psi b sequence does not.

Full Text

The Full Text of this article is available as a PDF (119.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajuh P. M., Heeney P. A., Maden B. E. Xenopus borealis and Xenopus laevis 28S ribosomal DNA and the complete 40S ribosomal precursor RNA coding units of both species. Proc Biol Sci. 1991 Jul 22;245(1312):65–71. doi: 10.1098/rspb.1991.0089. [DOI] [PubMed] [Google Scholar]
  2. Aparicio S., Morrison A., Gould A., Gilthorpe J., Chaudhuri C., Rigby P., Krumlauf R., Brenner S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1684–1688. doi: 10.1073/pnas.92.5.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachellerie J. P., Michot B., Nicoloso M., Balakin A., Ni J., Fournier M. J. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci. 1995 Jul;20(7):261–264. doi: 10.1016/s0968-0004(00)89039-8. [DOI] [PubMed] [Google Scholar]
  4. Baxendale S., Abdulla S., Elgar G., Buck D., Berks M., Micklem G., Durbin R., Bates G., Brenner S., Beck S. Comparative sequence analysis of the human and pufferfish Huntington's disease genes. Nat Genet. 1995 May;10(1):67–76. doi: 10.1038/ng0595-67. [DOI] [PubMed] [Google Scholar]
  5. Bozzoni I., Fragapane P., Annesi F., Pierandrei-Amaldi P., Amaldi F., Beccari E. Expression of two Xenopus laevis ribosomal protein genes in injected frog oocytes. A specific splicing block interferes with the L1 RNA maturation. J Mol Biol. 1984 Dec 25;180(4):987–1005. doi: 10.1016/0022-2836(84)90267-5. [DOI] [PubMed] [Google Scholar]
  6. Brenner S., Elgar G., Sandford R., Macrae A., Venkatesh B., Aparicio S. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature. 1993 Nov 18;366(6452):265–268. doi: 10.1038/366265a0. [DOI] [PubMed] [Google Scholar]
  7. Cecconi F., Mariottini P., Amaldi F. The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Nucleic Acids Res. 1995 Nov 25;23(22):4670–4676. doi: 10.1093/nar/23.22.4670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cecconi F., Mariottini P., Loreni F., Pierandrei-Amaldi P., Campioni N., Amaldi F. U17XS8, a small nucleolar RNA with a 12 nt complementarity to 18S rRNA and coded by a sequence repeated in the six introns of Xenopus laevis ribosomal protein S8 gene. Nucleic Acids Res. 1994 Mar 11;22(5):732–741. doi: 10.1093/nar/22.5.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fragapane P., Prislei S., Michienzi A., Caffarelli E., Bozzoni I. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J. 1993 Jul;12(7):2921–2928. doi: 10.1002/j.1460-2075.1993.tb05954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hariharan N., Kelley D. E., Perry R. P. Equipotent mouse ribosomal protein promoters have a similar architecture that includes internal sequence elements. Genes Dev. 1989 Nov;3(11):1789–1800. doi: 10.1101/gad.3.11.1789. [DOI] [PubMed] [Google Scholar]
  12. Kiss T., Filipowicz W. Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO J. 1993 Jul;12(7):2913–2920. doi: 10.1002/j.1460-2075.1993.tb05953.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lagna G., Loreni F., Beccari E., Carnevali F. HrpF, a human sequence-specific DNA-binding protein homologous to XrpFI, a Xenopus laevis oocyte transcription factor. Nucleic Acids Res. 1990 Oct 11;18(19):5811–5816. doi: 10.1093/nar/18.19.5811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leverette R. D., Andrews M. T., Maxwell E. S. Mouse U14 snRNA is a processed intron of the cognate hsc70 heat shock pre-messenger RNA. Cell. 1992 Dec 24;71(7):1215–1221. doi: 10.1016/s0092-8674(05)80069-8. [DOI] [PubMed] [Google Scholar]
  15. Macrae A. D., Brenner S. Analysis of the dopamine receptor family in the compact genome of the puffer fish Fugu rubripes. Genomics. 1995 Jan 20;25(2):436–446. doi: 10.1016/0888-7543(95)80044-m. [DOI] [PubMed] [Google Scholar]
  16. Mariottini P., Bagni C., Annesi F., Amaldi F. Isolation and nucleotide sequences of cDNAs for Xenopus laevis ribosomal protein S8: similarities in the 5' and 3' untranslated regions of mRNAs for various r-proteins. Gene. 1988 Jul 15;67(1):69–74. doi: 10.1016/0378-1119(88)90009-1. [DOI] [PubMed] [Google Scholar]
  17. Mariottini P., Bagni C., Francesconi A., Cecconi F., Serra M. J., Chen Q. M., Loreni F., Annesi F., Amaldi F. Sequence of the gene coding for ribosomal protein S8 of Xenopus laevis. Gene. 1993 Oct 15;132(2):255–260. doi: 10.1016/0378-1119(93)90204-g. [DOI] [PubMed] [Google Scholar]
  18. Mason P. J., Stevens D. J., Luzzatto L., Brenner S., Aparicio S. Genomic structure and sequence of the Fugu rubripes glucose-6-phosphate dehydrogenase gene (G6PD). Genomics. 1995 Apr 10;26(3):587–591. doi: 10.1016/0888-7543(95)80179-p. [DOI] [PubMed] [Google Scholar]
  19. Maxwell E. S., Fournier M. J. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934. doi: 10.1146/annurev.bi.64.070195.004341. [DOI] [PubMed] [Google Scholar]
  20. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pellizzoni L., Crosio C., Campioni N., Loreni F., Pierandrei-Amaldi P. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis. Nucleic Acids Res. 1994 Nov 11;22(22):4607–4613. doi: 10.1093/nar/22.22.4607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pierandrei-Amaldi P., Amaldi F. Aspects of regulation of ribosomal protein synthesis in Xenopus laevis. Review. Genetica. 1994;94(2-3):181–193. doi: 10.1007/BF01443432. [DOI] [PubMed] [Google Scholar]
  23. Pierandrei-Amaldi P., Beccari E., Bozzoni I., Amaldi F. Ribosomal protein production in normal and anucleolate Xenopus embryos: regulation at the posttranscriptional and translational levels. Cell. 1985 Aug;42(1):317–323. doi: 10.1016/s0092-8674(85)80127-6. [DOI] [PubMed] [Google Scholar]
  24. Pierandrei-Amaldi P., Beccari E. Messenger RNA for ribosomal proteins in Xenopus laevis oocytes. Eur J Biochem. 1980 May;106(2):603–611. doi: 10.1111/j.1432-1033.1980.tb04608.x. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sollner-Webb B. Novel intron-encoded small nucleolar RNAs. Cell. 1993 Nov 5;75(3):403–405. doi: 10.1016/0092-8674(93)90374-y. [DOI] [PubMed] [Google Scholar]
  27. Sáfrány G., Perry R. P. The relative contributions of various transcription factors to the overall promoter strength of the mouse ribosomal protein L30 gene. Eur J Biochem. 1995 Jun 15;230(3):1066–1072. doi: 10.1111/j.1432-1033.1995.tb20657.x. [DOI] [PubMed] [Google Scholar]
  28. Tycowski K. T., Shu M. D., Steitz J. A. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 1993 Jul;7(7A):1176–1190. doi: 10.1101/gad.7.7a.1176. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES