Skip to main content
Genetics logoLink to Genetics
. 1999 Sep;153(1):497–506. doi: 10.1093/genetics/153.1.497

The age of nonsynonymous and synonymous mutations in animal mtDNA and implications for the mildly deleterious theory.

R Nielsen 1, D M Weinreich 1
PMCID: PMC1460725  PMID: 10471729

Abstract

McDonald/Kreitman tests performed on animal mtDNA consistently reveal significant deviations from strict neutrality in the direction of an excess number of polymorphic nonsynonymous sites, which is consistent with purifying selection acting on nonsynonymous sites. We show that under models of recurrent neutral and deleterious mutations, the mean age of segregating neutral mutations is greater than the mean age of segregating selected mutations, even in the absence of recombination. We develop a test of the hypothesis that the mean age of segregating synonymous mutations equals the mean age of segregating nonsynonymous mutations in a sample of DNA sequences. The power of this age-of-mutation test and the power of the McDonald/Kreitman test are explored by computer simulations. We apply the new test to 25 previously published mitochondrial data sets and find weak evidence for selection against nonsynonymous mutations.

Full Text

The Full Text of this article is available as a PDF (141.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Inferring the fitness effects of DNA mutations from polymorphism and divergence data: statistical power to detect directional selection under stationarity and free recombination. Genetics. 1999 Jan;151(1):221–238. doi: 10.1093/genetics/151.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  3. Babcock C. S., Asmussen M. A. Effects of differential selection in the sexes on cytonuclear polymorphism and disequilibria. Genetics. 1996 Oct;144(2):839–853. doi: 10.1093/genetics/144.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker R. J., Van Den Bussche R. A., Wright A. J., Wiggins L. E., Hamilton M. J., Reat E. P., Smith M. H., Lomakin M. D., Chesser R. K. High levels of genetic change in rodents of Chernobyl. Nature. 1996 Apr 25;380(6576):707–708. doi: 10.1038/380707a0. [DOI] [PubMed] [Google Scholar]
  5. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  6. Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. doi: 10.1016/0022-2836(90)90225-B. [DOI] [PubMed] [Google Scholar]
  7. Garesse R. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics. 1988 Apr;118(4):649–663. doi: 10.1093/genetics/118.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodisman M. A., Asmussen M. A. Cytonuclear theory for haplodiploid species and X-linked genes. I. Hardy-Weinberg dynamics and continent-island, hybrid zone models. Genetics. 1997 Sep;147(1):321–338. doi: 10.1093/genetics/147.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffiths R. C., Tavaré S. Unrooted genealogical tree probabilities in the infinitely-many-sites model. Math Biosci. 1995 May;127(1):77–98. doi: 10.1016/0025-5564(94)00044-z. [DOI] [PubMed] [Google Scholar]
  10. Harding R. M., Fullerton S. M., Griffiths R. C., Bond J., Cox M. J., Schneider J. A., Moulin D. S., Clegg J. B. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am J Hum Genet. 1997 Apr;60(4):772–789. [PMC free article] [PubMed] [Google Scholar]
  11. Hasegawa M., Cao Y., Yang Z. Preponderance of slightly deleterious polymorphism in mitochondrial DNA: nonsynonymous/synonymous rate ratio is much higher within species than between species. Mol Biol Evol. 1998 Nov;15(11):1499–1505. doi: 10.1093/oxfordjournals.molbev.a025877. [DOI] [PubMed] [Google Scholar]
  12. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  13. Horai S., Hayasaka K., Kondo R., Tsugane K., Takahata N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):532–536. doi: 10.1073/pnas.92.2.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaplan N. L., Darden T., Hudson R. R. The coalescent process in models with selection. Genetics. 1988 Nov;120(3):819–829. doi: 10.1093/genetics/120.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacRae A. F., Anderson W. W. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics. 1988 Oct;120(2):485–494. doi: 10.1093/genetics/120.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  17. Nachman M. W., Boyer S. N., Aquadro C. F. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. doi: 10.1073/pnas.91.14.6364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nachman M. W., Brown W. M., Stoneking M., Aquadro C. F. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 1996 Mar;142(3):953–963. doi: 10.1093/genetics/142.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nachman M. W. Deleterious mutations in animal mitochondrial DNA. Genetica. 1998;102-103(1-6):61–69. [PubMed] [Google Scholar]
  20. Neuhauser C., Krone S. M. The genealogy of samples in models with selection. Genetics. 1997 Feb;145(2):519–534. doi: 10.1093/genetics/145.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973 Nov 9;246(5428):96–98. doi: 10.1038/246096a0. [DOI] [PubMed] [Google Scholar]
  22. Rand D. M., Kann L. M. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996 Jul;13(6):735–748. doi: 10.1093/oxfordjournals.molbev.a025634. [DOI] [PubMed] [Google Scholar]
  23. Rand D. M., Kann L. M. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica. 1998;102-103(1-6):393–407. [PubMed] [Google Scholar]
  24. Ruvolo M., Pan D., Zehr S., Goldberg T., Disotell T. R., von Dornum M. Gene trees and hominoid phylogeny. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8900–8904. doi: 10.1073/pnas.91.19.8900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Summers K., Bermingham E., Weigt L., McCafferty S., Dahlstrom L. Phenotypic and genetic divergence in three species of dart-poison frogs with contrasting parental behavior. J Hered. 1997 Jan-Feb;88(1):8–13. doi: 10.1093/oxfordjournals.jhered.a023065. [DOI] [PubMed] [Google Scholar]
  26. Wise C. A., Sraml M., Easteal S. Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics. 1998 Jan;148(1):409–421. doi: 10.1093/genetics/148.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES