Skip to main content
Genetics logoLink to Genetics
. 1999 Sep;153(1):339–350. doi: 10.1093/genetics/153.1.339

Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group.

F Rodríguez-Trelles 1, R Tarrío 1, F J Ayala 1
PMCID: PMC1460741  PMID: 10471717

Abstract

We investigated the nucleotide composition of five genes, Xdh, Adh, Sod, Per, and 28SrRNA, in nine species of Drosophila (subgenus Sophophora) and one of Scaptodrosophila. The six species of the Drosophila saltans group markedly differ from the others in GC content and codon use bias. The GC content in the third codon position, and to a lesser extent in the first position and the introns, is higher in the D. melanogaster and D. obscura groups than in the D. saltans group (in Scaptodrosophila it is intermediate but closer to the melanogaster and obscura species). Differences are greater for Xdh than for Adh, Sod, Per, and 28SrRNA, which are functionally more constrained. We infer that rapid evolution of GC content in the saltans lineage is largely due to a shift in mutation pressure, which may have been associated with diminished natural selection due to smaller effective population numbers rather than reduced recombination rates. The rate of GC content evolution impacts the rate of protein evolution and may distort phylogenetic inferences. Previous observations suggesting that GC content evolution is very limited in Drosophila may have been distorted due to the restricted number of genes and species (mostly D. melanogaster) investigated.

Full Text

The Full Text of this article is available as a PDF (165.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akashi H., Kliman R. M., Eyre-Walker A. Mutation pressure, natural selection, and the evolution of base composition in Drosophila. Genetica. 1998;102-103(1-6):49–60. [PubMed] [Google Scholar]
  3. Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics. 1996 Nov;144(3):1297–1307. doi: 10.1093/genetics/144.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akashi H., Schaeffer S. W. Natural selection and the frequency distributions of "silent" DNA polymorphism in Drosophila. Genetics. 1997 May;146(1):295–307. doi: 10.1093/genetics/146.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. doi: 10.1093/genetics/136.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anderson C. L., Carew E. A., Powell J. R. Evolution of the Adh locus in the Drosophila willistoni group: the loss of an intron, and shift in codon usage. Mol Biol Evol. 1993 May;10(3):605–618. doi: 10.1093/oxfordjournals.molbev.a040027. [DOI] [PubMed] [Google Scholar]
  7. Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985 May 24;228(4702):953–958. doi: 10.1126/science.4001930. [DOI] [PubMed] [Google Scholar]
  8. Carulli J. P., Krane D. E., Hartl D. L., Ochman H. Compositional heterogeneity and patterns of molecular evolution in the Drosophila genome. Genetics. 1993 Jul;134(3):837–845. doi: 10.1093/genetics/134.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collins D. W., Jukes T. H. Relationship between G + C in silent sites of codons and amino acid composition of human proteins. J Mol Evol. 1993 Mar;36(3):201–213. doi: 10.1007/BF00160475. [DOI] [PubMed] [Google Scholar]
  10. Cox E. C., Yanofsky C. Altered base ratios in the DNA of an Escherichia coli mutator strain. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1895–1902. doi: 10.1073/pnas.58.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crozier R. H., Crozier Y. C. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics. 1993 Jan;133(1):97–117. doi: 10.1093/genetics/133.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. D'Onofrio G., Mouchiroud D., Aïssani B., Gautier C., Bernardi G. Correlations between the compositional properties of human genes, codon usage, and amino acid composition of proteins. J Mol Evol. 1991 Jun;32(6):504–510. doi: 10.1007/BF02102652. [DOI] [PubMed] [Google Scholar]
  13. Gaut B. S., Muse S. V., Clark W. D., Clegg M. T. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol. 1992 Oct;35(4):292–303. doi: 10.1007/BF00161167. [DOI] [PubMed] [Google Scholar]
  14. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  15. Jermiin L. S., Graur D., Lowe R. M., Crozier R. H. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes. J Mol Evol. 1994 Aug;39(2):160–173. doi: 10.1007/BF00163805. [DOI] [PubMed] [Google Scholar]
  16. Jukes T. H., Bhushan V. Silent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes. J Mol Evol. 1986;24(1-2):39–44. doi: 10.1007/BF02099949. [DOI] [PubMed] [Google Scholar]
  17. Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem. 1984 Mar 10;259(5):2956–2960. [PubMed] [Google Scholar]
  18. Kliman R. M., Eyre-Walker A. Patterns of base composition within the genes of Drosophila melanogaster. J Mol Evol. 1998 May;46(5):534–541. doi: 10.1007/pl00006334. [DOI] [PubMed] [Google Scholar]
  19. Kwiatowski J., Krawczyk M., Jaworski M., Skarecky D., Ayala F. J. Erratic evolution of glycerol-3-phosphate dehydrogenase in Drosophila, Chymomyza, and Ceratitis. J Mol Evol. 1997 Jan;44(1):9–22. doi: 10.1007/pl00006126. [DOI] [PubMed] [Google Scholar]
  20. Kwiatowski J., Skarecky D., Bailey K., Ayala F. J. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene. J Mol Evol. 1994 May;38(5):443–454. doi: 10.1007/BF00178844. [DOI] [PubMed] [Google Scholar]
  21. Lloyd A. T., Sharp P. M. Evolution of the recA gene and the molecular phylogeny of bacteria. J Mol Evol. 1993 Oct;37(4):399–407. doi: 10.1007/BF00178869. [DOI] [PubMed] [Google Scholar]
  22. Moriyama E. N., Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics. 1992 Apr;130(4):855–864. doi: 10.1093/genetics/130.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moriyama E. N., Hartl D. L. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. doi: 10.1093/genetics/134.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Grady P. M., Clark J. B., Kidwell M. G. Phylogeny of the Drosophila saltans species group based on combined analysis of nuclear and mitochondrial DNA sequences. Mol Biol Evol. 1998 Jun;15(6):656–664. doi: 10.1093/oxfordjournals.molbev.a025969. [DOI] [PubMed] [Google Scholar]
  25. Ohta T. Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4548–4551. doi: 10.1073/pnas.90.10.4548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petrov D. A., Hartl D. L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475–1479. doi: 10.1073/pnas.96.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Powell J. R., Moriyama E. N. Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7784–7790. doi: 10.1073/pnas.94.15.7784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pélandakis M., Solignac M. Molecular phylogeny of Drosophila based on ribosomal RNA sequences. J Mol Evol. 1993 Nov;37(5):525–543. doi: 10.1007/BF00160433. [DOI] [PubMed] [Google Scholar]
  29. Riley M. A. Nucleotide sequence of the Xdh region in Drosophila pseudoobscura and an analysis of the evolution of synonymous codons. Mol Biol Evol. 1989 Jan;6(1):33–52. doi: 10.1093/oxfordjournals.molbev.a040529. [DOI] [PubMed] [Google Scholar]
  30. SPASSKY B., ZIMMERING S., DOBZHANSKY T. Comparative genetics of Drosophila prosaltans. Heredity (Edinb) 1950 Aug;4(2):189–200. doi: 10.1038/hdy.1950.14. [DOI] [PubMed] [Google Scholar]
  31. SUEOKA N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci U S A. 1962 Apr 15;48:582–592. doi: 10.1073/pnas.48.4.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  33. Shields D. C. Switches in species-specific codon preferences: the influence of mutation biases. J Mol Evol. 1990 Aug;31(2):71–80. doi: 10.1007/BF02109476. [DOI] [PubMed] [Google Scholar]
  34. Spradling A. C., Rubin G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. doi: 10.1016/0092-8674(83)90135-6. [DOI] [PubMed] [Google Scholar]
  35. Sueoka N. Directional mutation pressure, selective constraints, and genetic equilibria. J Mol Evol. 1992 Feb;34(2):95–114. doi: 10.1007/BF00182387. [DOI] [PubMed] [Google Scholar]
  36. Tarrío R., Rodríguez-Trelles F., Ayala F. J. New Drosophila introns originate by duplication. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1658–1662. doi: 10.1073/pnas.95.4.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thomas R. H., Hunt J. A. The molecular evolution of the alcohol dehydrogenase locus and the phylogeny of Hawaiian Drosophila. Mol Biol Evol. 1991 Sep;8(5):687–702. doi: 10.1093/oxfordjournals.molbev.a040678. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. True J. R., Mercer J. M., Laurie C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. doi: 10.1093/genetics/142.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol. 1994 Jul;39(1):105–111. doi: 10.1007/BF00178256. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES