Skip to main content
Genetics logoLink to Genetics
. 1999 Sep;153(1):351–360. doi: 10.1093/genetics/153.1.351

Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequences at multiple intron loci.

N Davies 1, F X Villablanca 1, G K Roderick 1
PMCID: PMC1460749  PMID: 10471718

Abstract

The Mediterranean fruit fly, Ceratitis capitata, is a devastating agricultural pest that threatens to become established in vulnerable areas such as California and Florida. Considerable controversy surrounds the status of Californian medfly infestations: Do they represent repeated introductions or the persistence of a resident population? Attempts to resolve this question using traditional population genetic markers and statistical methods are problematic because the most likely source populations in Latin America were themselves only recently colonized and are genetically very similar. Here, significant population structure among several New World medfly populations is demonstrated through the analysis of DNA sequence variation at four intron loci. Surprisingly, in these newly founded populations, estimates of population structure increase when measures of subdivision take into account the relatedness of alleles as well as their frequency. A nonequilibrium, likelihood-based statistical test that utilizes multilocus genotypes suggests that the sole medfly captured in California during 1996 was introduced from Latin America and was less likely to be a remnant of an ancestral Californian population. Many bioinvasions are hierarchical in nature, consisting of several sequential or overlapping invasion events, the totality of which can be termed a metainvasion. Phylogenetic data from multilocus DNA sequences will be vital to understanding the evolutionary and ecological processes that underlie metainvasions and to resolving their constituent levels.

Full Text

The Full Text of this article is available as a PDF (385.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baruffi L., Damiani G., Guglielmino C. R., Bandi C., Malacrida A. R., Gasperi G. Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity (Edinb) 1995 Apr;74(Pt 4):425–437. doi: 10.1038/hdy.1995.60. [DOI] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  3. Carey J. R. Establishment of the Mediterranean fruit fly in California. Science. 1991 Sep 20;253(5026):1369–1373. doi: 10.1126/science.1896848. [DOI] [PubMed] [Google Scholar]
  4. Davies N, Villablanca FX, Roderick GK. Determining the source of individuals: multilocus genotyping in nonequilibrium population genetics. Trends Ecol Evol. 1999 Jan;14(1):17–21. doi: 10.1016/s0169-5347(98)01530-4. [DOI] [PubMed] [Google Scholar]
  5. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gasperi G., Guglielmino C. R., Malacrida A. R., Milani R. Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wied.) (medfly). Heredity (Edinb) 1991 Dec;67(Pt 3):347–356. doi: 10.1038/hdy.1991.98. [DOI] [PubMed] [Google Scholar]
  7. Hudson R. R. How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained? Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6815–6818. doi: 10.1073/pnas.91.15.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lathrop G. M., Hooper A. B., Huntsman J. W., Ward R. H. Evaluating pedigree data. I. The estimation of pedigree error in the presence of marker mistyping. Am J Hum Genet. 1983 Mar;35(2):241–262. [PMC free article] [PubMed] [Google Scholar]
  9. Lessa E. P. Rapid surveying of DNA sequence variation in natural populations. Mol Biol Evol. 1992 Mar;9(2):323–330. doi: 10.1093/oxfordjournals.molbev.a040723. [DOI] [PubMed] [Google Scholar]
  10. Marshall T. C., Slate J., Kruuk L. E., Pemberton J. M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 1998 May;7(5):639–655. doi: 10.1046/j.1365-294x.1998.00374.x. [DOI] [PubMed] [Google Scholar]
  11. McGuigan K., McDonald K., Parris K., Moritz C. Mitochondrial DNA diversity and historical biogeography of a wet forest-restricted frog (Litoria pearsoniana) from mid-east Australia. Mol Ecol. 1998 Feb;7(2):175–186. doi: 10.1046/j.1365-294x.1998.00329.x. [DOI] [PubMed] [Google Scholar]
  12. McPheron B. A., Gasparich G. E., Han H. Y., Steck G. J., Sheppard W. S. Mitochondrial DNA restriction map for the Mediterranean fruit fly, Ceratitis capitata. Biochem Genet. 1994 Feb;32(1-2):25–33. doi: 10.1007/BF00557236. [DOI] [PubMed] [Google Scholar]
  13. Ortí G., Hare M. P., Avise J. C. Detection and isolation of nuclear haplotypes by PCR-SSCP. Mol Ecol. 1997 Jun;6(6):575–580. doi: 10.1046/j.1365-294x.1997.00212.x. [DOI] [PubMed] [Google Scholar]
  14. Palumbi S. R., Baker C. S. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol. 1994 May;11(3):426–435. doi: 10.1093/oxfordjournals.molbev.a040115. [DOI] [PubMed] [Google Scholar]
  15. Rannala B., Mountain J. L. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9197–9201. doi: 10.1073/pnas.94.17.9197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roderick G. K., Gillespie R. G. Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol Ecol. 1998 Apr;7(4):519–531. doi: 10.1046/j.1365-294x.1998.00309.x. [DOI] [PubMed] [Google Scholar]
  17. Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Templeton A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol. 1998 Apr;7(4):381–397. doi: 10.1046/j.1365-294x.1998.00308.x. [DOI] [PubMed] [Google Scholar]
  19. Villablanca F. X., Roderick G. K., Palumbi S. R. Invasion genetics of the Mediterranean fruit fly: variation in multiple nuclear introns. Mol Ecol. 1998 May;7(5):547–560. doi: 10.1046/j.1365-294x.1998.00351.x. [DOI] [PubMed] [Google Scholar]
  20. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES