Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Aug 15;24(16):3267–3275. doi: 10.1093/nar/24.16.3267

Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase.

J M Zingg 1, J C Shen 1, A S Yang 1, H Rapoport 1, P A Jones 1
PMCID: PMC146075  PMID: 8774911

Abstract

The target cytosines of (cytosine-5)-DNA methyltransferases in prokaryotic and eukaryotic DNA show increased rates of C-->T transition mutations compared to non-target cytosines. These mutations are induced either by the spontaneous deamination of 5-mC-->T generating inefficiently repaired G:T rather than G:U mismatches, or by the enzyme-induced C-->U deamination which occurs under conditions of reduced levels of S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy). We tested whether various inhibitors of (cytosine-5)-DNA methyltransferases analogous to AdoMet and AdoHcy would affect the rate of enzyme-induced deamination of the target cytosine by M.HpaII and M.SssI. Interestingly, we found two compounds, sinefungin and 5'-amino-5'-deoxyadenosine, that increased the rate of deamination 10(3)-fold in the presence and 10(4)-fold in the absence of AdoMet and AdoHcy. We have therefore identified the first mutagenic compounds specific for the target sites of (cytosine-5)-DNA methyltransferases. A number of analogs of AdoMet and AdoHcy have been considered as possible antiviral, anticancer, antifungal and antiparasitic agents. Our findings show that chemotherapeutic agents with affinities to the cofactor binding pocket of (cytosine-5)-DNA methyltransferase should be tested for their potential mutagenic effects.

Full Text

The Full Text of this article is available as a PDF (159.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandaru B., Wyszynski M., Bhagwat A. S. HpaII methyltransferase is mutagenic in Escherichia coli. J Bacteriol. 1995 May;177(10):2950–2952. doi: 10.1128/jb.177.10.2950-2952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergerat A., Guschlbauer W. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli. Nucleic Acids Res. 1990 Aug 11;18(15):4369–4375. doi: 10.1093/nar/18.15.4369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bestor T. H., Verdine G. L. DNA methyltransferases. Curr Opin Cell Biol. 1994 Jun;6(3):380–389. doi: 10.1016/0955-0674(94)90030-2. [DOI] [PubMed] [Google Scholar]
  4. Blanchard P., Dodic N., Fourrey J. L., Lawrence F., Mouna A. M., Robert-Gero M. Synthesis and biological activity of sinefungin analogues. J Med Chem. 1991 Sep;34(9):2798–2803. doi: 10.1021/jm00113a018. [DOI] [PubMed] [Google Scholar]
  5. Borchardt R. T. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: potential targets for the design of chemotherapeutic agents. J Med Chem. 1980 Apr;23(4):347–357. doi: 10.1021/jm00178a001. [DOI] [PubMed] [Google Scholar]
  6. Camici M., Turriani M., Tozzi M. G., Turchi G., Cos J., Alemany C., Miralles A., Noe V., Ciudad C. J. Purine enzyme profile in human colon-carcinoma cell lines and differential sensitivity to deoxycoformycin and 2'-deoxyadenosine in combination. Int J Cancer. 1995 Jul 17;62(2):176–183. doi: 10.1002/ijc.2910620212. [DOI] [PubMed] [Google Scholar]
  7. Chen L., MacMillan A. M., Chang W., Ezaz-Nikpay K., Lane W. S., Verdine G. L. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry. 1991 Nov 19;30(46):11018–11025. doi: 10.1021/bi00110a002. [DOI] [PubMed] [Google Scholar]
  8. Cheng X., Kumar S., Posfai J., Pflugrath J. W., Roberts R. J. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 1993 Jul 30;74(2):299–307. doi: 10.1016/0092-8674(93)90421-l. [DOI] [PubMed] [Google Scholar]
  9. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooper D. N., Krawczak M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet. 1990 Jun;85(1):55–74. doi: 10.1007/BF00276326. [DOI] [PubMed] [Google Scholar]
  11. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  12. Counts J. L., Goodman J. I. Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell. 1995 Oct 6;83(1):13–15. doi: 10.1016/0092-8674(95)90228-7. [DOI] [PubMed] [Google Scholar]
  13. Della Ragione F., Russo G., Oliva A., Mastropietro S., Mancini A., Borrelli A., Casero R. A., Iolascon A., Zappia V. 5'-Deoxy-5'-methylthioadenosine phosphorylase and p16INK4 deficiency in multiple tumor cell lines. Oncogene. 1995 Mar 2;10(5):827–833. [PubMed] [Google Scholar]
  14. Duker N. J., Jensen D. E., Hart D. M., Fishbein D. E. Perturbations of enzymic uracil excision due to purine damage in DNA. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4878–4882. doi: 10.1073/pnas.79.16.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duncan B. K., Miller J. H. Mutagenic deamination of cytosine residues in DNA. Nature. 1980 Oct 9;287(5782):560–561. doi: 10.1038/287560a0. [DOI] [PubMed] [Google Scholar]
  16. Eftedal I., Guddal P. H., Slupphaug G., Volden G., Krokan H. E. Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Res. 1993 May 11;21(9):2095–2101. doi: 10.1093/nar/21.9.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fabianowska-Majewska K., Duley J. A., Simmonds H. A. Effects of novel anti-viral adenosine analogues on the activity of S-adenosylhomocysteine hydrolase from human liver. Biochem Pharmacol. 1994 Aug 30;48(5):897–903. doi: 10.1016/0006-2952(94)90360-3. [DOI] [PubMed] [Google Scholar]
  18. Ford K., Taylor C., Connolly B., Hornby D. P. Effects of co-factor and deoxycytidine substituted oligonucleotides upon sequence-specific interactions between MspI DNA methyltransferase and DNA. J Mol Biol. 1993 Apr 5;230(3):779–786. doi: 10.1006/jmbi.1993.1200. [DOI] [PubMed] [Google Scholar]
  19. Friedman S. Binding of the EcoRII methylase to azacytosine-containing DNA. Nucleic Acids Res. 1986 Jun 11;14(11):4543–4556. doi: 10.1093/nar/14.11.4543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fuller R. W., Nagarajan R. Inhibition of methyltransferases by some new analogs of S-adenosylhomocysteine. Biochem Pharmacol. 1978;27(15):1981–1983. doi: 10.1016/0006-2952(78)90018-7. [DOI] [PubMed] [Google Scholar]
  21. Gabbara S., Sheluho D., Bhagwat A. S. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active. Biochemistry. 1995 Jul 11;34(27):8914–8923. doi: 10.1021/bi00027a044. [DOI] [PubMed] [Google Scholar]
  22. Garrett E. R., Tsau J. Solvolyses of cytosine and cytidine. J Pharm Sci. 1972 Jul;61(7):1052–1061. doi: 10.1002/jps.2600610703. [DOI] [PubMed] [Google Scholar]
  23. Giovannucci E., Stampfer M. J., Colditz G. A., Rimm E. B., Trichopoulos D., Rosner B. A., Speizer F. E., Willett W. C. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst. 1993 Jun 2;85(11):875–884. doi: 10.1093/jnci/85.11.875. [DOI] [PubMed] [Google Scholar]
  24. Gordee R. S., Butler T. F. A9145, a new adenine-containing antifungal antibiotic. II. Biological activity. J Antibiot (Tokyo) 1973 Aug;26(8):466–470. doi: 10.7164/antibiotics.26.466. [DOI] [PubMed] [Google Scholar]
  25. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  26. Grytzmann B., Morr M., Wigand R. Derivatives of 3'- and 5'-deoxyadenosine: their inhibitory activity against DNA viruses. Chemotherapy. 1980;26(5):316–322. doi: 10.1159/000237923. [DOI] [PubMed] [Google Scholar]
  27. Hamil R. L., Hoehn M. M. A9145, a new adenine-containing antifungal antibiotic. I. Discovery and isolation. J Antibiot (Tokyo) 1973 Aug;26(8):463–465. doi: 10.7164/antibiotics.26.463. [DOI] [PubMed] [Google Scholar]
  28. Holliday R., Grigg G. W. DNA methylation and mutation. Mutat Res. 1993 Jan;285(1):61–67. doi: 10.1016/0027-5107(93)90052-h. [DOI] [PubMed] [Google Scholar]
  29. Jones P. A., Buckley J. D. The role of DNA methylation in cancer. Adv Cancer Res. 1990;54:1–23. doi: 10.1016/s0065-230x(08)60806-4. [DOI] [PubMed] [Google Scholar]
  30. Jones P. A., Rideout W. M., 3rd, Shen J. C., Spruck C. H., Tsai Y. C. Methylation, mutation and cancer. Bioessays. 1992 Jan;14(1):33–36. doi: 10.1002/bies.950140107. [DOI] [PubMed] [Google Scholar]
  31. Jänne J., Alhonen L., Leinonen P. Polyamines: from molecular biology to clinical applications. Ann Med. 1991 Aug;23(3):241–259. doi: 10.3109/07853899109148056. [DOI] [PubMed] [Google Scholar]
  32. Kido J., Ashida Y., Shinkai K., Akedo H., Isoai A., Kumagai H., Inoue H. Effects of methylthiodeoxyadenosine and its analogs on in vitro invasion of rat ascites hepatoma cells and methylation of their phospholipids. Jpn J Cancer Res. 1991 Oct;82(10):1104–1111. doi: 10.1111/j.1349-7006.1991.tb01764.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
  34. Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Koeberl D. D., Bottema C. D., Ketterling R. P., Bridge P. J., Lillicrap D. P., Sommer S. S. Mutations causing hemophilia B: direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene. Am J Hum Genet. 1990 Aug;47(2):202–217. [PMC free article] [PubMed] [Google Scholar]
  36. Kolb M., Danzin C., Barth J., Claverie N. Synthesis and biochemical properties of chemically stable product analogues of the reaction catalyzed by S-adenosyl-L-methionine decarboxylase. J Med Chem. 1982 May;25(5):550–556. doi: 10.1021/jm00347a014. [DOI] [PubMed] [Google Scholar]
  37. Kumar N. V., Varshney U. Inefficient excision of uracil from loop regions of DNA oligomers by E. coli uracil DNA glycosylase. Nucleic Acids Res. 1994 Sep 11;22(18):3737–3741. doi: 10.1093/nar/22.18.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R. J., Wilson G. G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994 Jan 11;22(1):1–10. doi: 10.1093/nar/22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  40. Laird P. W., Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3(Spec No):1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. [DOI] [PubMed] [Google Scholar]
  41. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  42. Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3405–3410. doi: 10.1021/bi00713a035. [DOI] [PubMed] [Google Scholar]
  43. Little M., Wainwright B. Methylation and p16: suppressing the suppressor. Nat Med. 1995 Jul;1(7):633–634. doi: 10.1038/nm0795-633. [DOI] [PubMed] [Google Scholar]
  44. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  45. Malina H., Tempete C., Robert-Gero M. Enhanced sinefungin production by medium improvement, mutagenesis and protoplast regeneration of Streptomyces incarnatus NRRL 8089. J Antibiot (Tokyo) 1985 Sep;38(9):1204–1210. doi: 10.7164/antibiotics.38.1204. [DOI] [PubMed] [Google Scholar]
  46. Matsuo K., Silke J., Gramatikoff K., Schaffner W. The CpG-specific methylase SssI has topoisomerase activity in the presence of Mg2+. Nucleic Acids Res. 1994 Dec 11;22(24):5354–5359. doi: 10.1093/nar/22.24.5354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Miller R. L., Adamczyk D. L., Miller W. H., Koszalka G. W., Rideout J. L., Beacham L. M., 3rd, Chao E. Y., Haggerty J. J., Krenitsky T. A., Elion G. B. Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem. 1979 Apr 10;254(7):2346–2352. [PubMed] [Google Scholar]
  48. Montgomery J. A., Shortnacy A. T., Thomas H. J. Analogs of 5'-deoxy-5'-(methylthio)adenosine. J Med Chem. 1974 Nov;17(11):1197–1207. doi: 10.1021/jm00257a014. [DOI] [PubMed] [Google Scholar]
  49. Moyer R., Briley D., Johnsen A., Stewart U., Shaw B. R. Echinomycin, a bis-intercalating agent, induces C-->T mutations via cytosine deamination. Mutat Res. 1993 Aug;288(2):291–300. doi: 10.1016/0027-5107(93)90097-y. [DOI] [PubMed] [Google Scholar]
  50. Nolan L. L. Molecular target of the antileishmanial action of sinefungin. Antimicrob Agents Chemother. 1987 Oct;31(10):1542–1548. doi: 10.1128/aac.31.10.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Notari R. E. A mechanism for the hydrolytic deamination of cytosine arabinoside in aqueous buffer. J Pharm Sci. 1967 Jul;56(7):804–809. doi: 10.1002/jps.2600560703. [DOI] [PubMed] [Google Scholar]
  52. Olopade O. I., Pomykala H. M., Hagos F., Sveen L. W., Espinosa R., 3rd, Dreyling M. H., Gursky S., Stadler W. M., Le Beau M. M., Bohlander S. K. Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6489–6493. doi: 10.1073/pnas.92.14.6489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Paolantonacci P., Lawrence F., Robert-Géro M. Differential effect of sinefungin and its analogs on the multiplication of three Leishmania species. Antimicrob Agents Chemother. 1985 Oct;28(4):528–531. doi: 10.1128/aac.28.4.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Pegg A. E., Coward J. K., Talekar R. R., Secrist J. A., 3rd Effects of certain 5'-substituted adenosines on polyamine synthesis: selective inhibitors of spermine synthase. Biochemistry. 1986 Jul 15;25(14):4091–4097. doi: 10.1021/bi00362a016. [DOI] [PubMed] [Google Scholar]
  55. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  56. Pike M. C., Kredich N. M., Snyderman R. Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3928–3932. doi: 10.1073/pnas.75.8.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Porter C. W., Sufrin J. R. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 1986 Jul-Aug;6(4):525–542. [PubMed] [Google Scholar]
  58. Pugh C. S., Borchardt R. T. Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry. 1982 Mar 30;21(7):1535–1541. doi: 10.1021/bi00536a011. [DOI] [PubMed] [Google Scholar]
  59. Pugh C. S., Borchardt R. T., Stone H. O. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2'-)-methyltransferase, and viral multiplication. J Biol Chem. 1978 Jun 25;253(12):4075–4077. [PubMed] [Google Scholar]
  60. Reich N. O., Mashhoon N. Inhibition of EcoRI DNA methylase with cofactor analogs. J Biol Chem. 1990 May 25;265(15):8966–8970. [PubMed] [Google Scholar]
  61. Rideout W. M., 3rd, Coetzee G. A., Olumi A. F., Jones P. A. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990 Sep 14;249(4974):1288–1290. doi: 10.1126/science.1697983. [DOI] [PubMed] [Google Scholar]
  62. Roberts R. J. On base flipping. Cell. 1995 Jul 14;82(1):9–12. doi: 10.1016/0092-8674(95)90046-2. [DOI] [PubMed] [Google Scholar]
  63. Santi D. V., Hardy L. W. Catalytic mechanism and inhibition of tRNA (uracil-5-)methyltransferase: evidence for covalent catalysis. Biochemistry. 1987 Dec 29;26(26):8599–8606. doi: 10.1021/bi00400a016. [DOI] [PubMed] [Google Scholar]
  64. Santi D. V., Norment A., Garrett C. E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6993–6997. doi: 10.1073/pnas.81.22.6993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Schluckebier G., Labahn J., Granzin J., Schildkraut I., Saenger W. A model for DNA binding and enzyme action derived from crystallographic studies of the TaqI N6-adenine-methyltransferase. Gene. 1995 May 19;157(1-2):131–134. doi: 10.1016/0378-1119(94)00690-t. [DOI] [PubMed] [Google Scholar]
  66. Schmutte C., Rideout W. M., 3rd, Shen J. C., Jones P. A. Mutagenicity of nitric oxide is not caused by deamination of cytosine or 5-methylcytosine in double-stranded DNA. Carcinogenesis. 1994 Dec;15(12):2899–2903. doi: 10.1093/carcin/15.12.2899. [DOI] [PubMed] [Google Scholar]
  67. Schmutte C., Yang A. S., Beart R. W., Jones P. A. Base excision repair of U:G mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:G mismatches in extracts of human colon tumors. Cancer Res. 1995 Sep 1;55(17):3742–3746. [PubMed] [Google Scholar]
  68. Selker E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi: 10.1146/annurev.ge.24.120190.003051. [DOI] [PubMed] [Google Scholar]
  69. Shapiro R., Klein R. S. The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry. 1966 Jul;5(7):2358–2362. doi: 10.1021/bi00871a026. [DOI] [PubMed] [Google Scholar]
  70. Shen J. C., Rideout W. M., 3rd, Jones P. A. High frequency mutagenesis by a DNA methyltransferase. Cell. 1992 Dec 24;71(7):1073–1080. doi: 10.1016/s0092-8674(05)80057-1. [DOI] [PubMed] [Google Scholar]
  71. Shen J. C., Rideout W. M., 3rd, Jones P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994 Mar 25;22(6):972–976. doi: 10.1093/nar/22.6.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Shen J. C., Zingg J. M., Yang A. S., Schmutte C., Jones P. A. A mutant HpaII methyltransferase functions as a mutator enzyme. Nucleic Acids Res. 1995 Nov 11;23(21):4275–4282. doi: 10.1093/nar/23.21.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Shinkai K., Mukai M., Horai T., Ohigashi H., Nishikawa S., Inoue H., Takeda Y., Akedo H. Inhibition of in vitro tumor cell invasion by transmethylation inhibitors. Jpn J Cancer Res. 1989 Aug;80(8):716–719. doi: 10.1111/j.1349-7006.1989.tb01703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Simile M. M., Pascale R., De Miglio M. R., Nufris A., Daino L., Seddaiu M. A., Gaspa L., Feo F. Correlation between S-adenosyl-L-methionine content and production of c-myc, c-Ha-ras, and c-Ki-ras mRNA transcripts in the early stages of rat liver carcinogenesis. Cancer Lett. 1994 Apr 29;79(1):9–16. doi: 10.1016/0304-3835(94)90056-6. [DOI] [PubMed] [Google Scholar]
  75. Smith S. S., Kaplan B. E., Sowers L. C., Newman E. M. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4744–4748. doi: 10.1073/pnas.89.10.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sommer S. S. Recent human germ-line mutation: inferences from patients with hemophilia B. Trends Genet. 1995 Apr;11(4):141–147. doi: 10.1016/s0168-9525(00)89028-9. [DOI] [PubMed] [Google Scholar]
  77. Spruck C. H., 3rd, Rideout W. M., 3rd, Jones P. A. DNA methylation and cancer. EXS. 1993;64:487–509. doi: 10.1007/978-3-0348-9118-9_22. [DOI] [PubMed] [Google Scholar]
  78. Trager W., Tershakovec M., Chiang P. K., Cantoni G. L. Plasmodium falciparum: antimalarial activity in culture of sinefungin and other methylation inhibitors. Exp Parasitol. 1980 Aug;50(1):83–89. doi: 10.1016/0014-4894(80)90010-7. [DOI] [PubMed] [Google Scholar]
  79. Vedel M., Lawrence F., Robert-Gero M., Lederer E. The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by Rous sarcoma virus. Biochem Biophys Res Commun. 1978 Nov 14;85(1):371–376. doi: 10.1016/s0006-291x(78)80052-7. [DOI] [PubMed] [Google Scholar]
  80. Verdine G. L. The flip side of DNA methylation. Cell. 1994 Jan 28;76(2):197–200. doi: 10.1016/0092-8674(94)90326-3. [DOI] [PubMed] [Google Scholar]
  81. Wu J. C., Santi D. V. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed] [Google Scholar]
  82. Wyszynski M., Gabbara S., Bhagwat A. S. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1574–1578. doi: 10.1073/pnas.91.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Yang A. S., Shen J. C., Zingg J. M., Mi S., Jones P. A. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 1995 Apr 25;23(8):1380–1387. doi: 10.1093/nar/23.8.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Yebra M. J., Bhagwat A. S. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry. 1995 Nov 14;34(45):14752–14757. doi: 10.1021/bi00045a016. [DOI] [PubMed] [Google Scholar]
  85. Yebra M. J., Sanchez J., Martin C. G., Hardisson C., Barbes C. The effect of sinefungin and synthetic analogues on RNA and DNA methyltransferases from Streptomyces. J Antibiot (Tokyo) 1991 Oct;44(10):1141–1147. doi: 10.7164/antibiotics.44.1141. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES