Skip to main content
Genetics logoLink to Genetics
. 1999 Sep;153(1):95–105. doi: 10.1093/genetics/153.1.95

The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans.

A J Small 1, M J Hynes 1, M A Davis 1
PMCID: PMC1460753  PMID: 10471703

Abstract

The areA gene of Aspergillus nidulans encodes a GATA zinc finger transcription factor that activates the expression of a large number of genes subject to nitrogen metabolite repression. The amount and activity of the AreA protein under different nitrogen conditions is modulated by transcriptional, post-transcriptional, and post-translational controls. One of these controls of AreA activity has been proposed to involve the NmrA protein interacting with the DNA-binding domain and the extreme C terminus of AreA to inhibit DNA binding under nitrogen sufficient conditions. In contrast, mutational evidence suggests that the tamA gene has a positive role together with areA in regulating the expression of genes subject to nitrogen metabolite repression. This gene was identified by the selection of mutants resistant to toxic nitrogen source analogues, and a number of nitrogen metabolic activities have been shown to be reduced in these mutants. To investigate the role of this gene we have used constructs encoding the TamA protein fused to the DNA-binding domain of either the FacB or the AmdR regulatory proteins. These hybrid proteins have been shown to activate expression of the genes of acetate or GABA utilization, respectively, as well as the amdS gene. Strong activation was shown to require the AreA protein but was not dependent on AreA binding to DNA. The homologous areA gene of A. oryzae and nit-2 gene of Neurospora crassa can substitute for A. nidulans areA in this interaction. We have shown that the same C-terminal region of AreA and NIT-2 that is involved in the interaction with NmrA is required for the TamA-AreA interaction. However, it is unlikely that TamA requires the same residues as NmrA within the GATA DNA-binding domain of AreA.

Full Text

The Full Text of this article is available as a PDF (237.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrianopoulos A., Hynes M. J. Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol. 1988 Aug;8(8):3532–3541. doi: 10.1128/mcb.8.8.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrianopoulos A., Hynes M. J. Sequence and functional analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol. 1990 Jun;10(6):3194–3203. doi: 10.1128/mcb.10.6.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrianopoulos A., Kourambas S., Sharp J. A., Davis M. A., Hynes M. J. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol. 1998 Apr;180(7):1973–1977. doi: 10.1128/jb.180.7.1973-1977.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apirion D. The two-way selection of mutants and revertants in respect of acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans. Genet Res. 1965 Nov;6(3):317–329. doi: 10.1017/s0016672300004213. [DOI] [PubMed] [Google Scholar]
  5. Armitt S., McCullough W., Roberts C. F. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol. 1976 Feb;92(2):263–282. doi: 10.1099/00221287-92-2-263. [DOI] [PubMed] [Google Scholar]
  6. Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
  7. Arst H. N., Jr Integrator gene in Aspergillus nidulans. Nature. 1976 Jul 15;262(5565):231–234. doi: 10.1038/262231a0. [DOI] [PubMed] [Google Scholar]
  8. Arst H. N., Jr, Penfold H. A., Bailey C. R. Lactam utilisation in Aspergillus nidulans: evidence for a fourth gene under the control of the integrator gene intA. Mol Gen Genet. 1978 Nov 9;166(3):321–327. doi: 10.1007/BF00267625. [DOI] [PubMed] [Google Scholar]
  9. Bartek J., Bartkova J., Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol. 1996 Dec;8(6):805–814. doi: 10.1016/s0955-0674(96)80081-0. [DOI] [PubMed] [Google Scholar]
  10. Bonnefoy N., Copsey J., Hynes M. J., Davis M. A. Yeast proteins can activate expression through regulatory sequences of the amdS gene of Aspergillus nidulans. Mol Gen Genet. 1995 Jan 20;246(2):223–227. doi: 10.1007/BF00294685. [DOI] [PubMed] [Google Scholar]
  11. Bricmont P. A., Daugherty J. R., Cooper T. G. The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Feb;11(2):1161–1166. doi: 10.1128/mcb.11.2.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Caddick M. X., Arst H. N., Jr Deletion of the 389 N-terminal residues of the transcriptional activator AREA does not result in nitrogen metabolite derepression in Aspergillus nidulans. J Bacteriol. 1998 Nov;180(21):5762–5764. doi: 10.1128/jb.180.21.5762-5764.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coffman J. A., Rai R., Loprete D. M., Cunningham T., Svetlov V., Cooper T. G. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol. 1997 Jun;179(11):3416–3429. doi: 10.1128/jb.179.11.3416-3429.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  15. Davis M. A., Cobbett C. S., Hynes M. J. An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene. 1988 Mar 31;63(2):199–212. doi: 10.1016/0378-1119(88)90525-2. [DOI] [PubMed] [Google Scholar]
  16. Davis M. A., Hynes M. J. Complementation of areA- regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3753–3757. doi: 10.1073/pnas.84.11.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Davis M. A., Small A. J., Kourambas S., Hynes M. J. The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol. 1996 Jun;178(11):3406–3409. doi: 10.1128/jb.178.11.3406-3409.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Froeliger E. H., Carpenter B. E. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet. 1996 Jul 26;251(6):647–656. doi: 10.1007/BF02174113. [DOI] [PubMed] [Google Scholar]
  19. Fu Y. H., Marzluf G. A. nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5331–5335. doi: 10.1073/pnas.87.14.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haas H., Bauer B., Redl B., Stöffler G., Marzluf G. A. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet. 1995 Jan;27(2):150–158. doi: 10.1007/BF00313429. [DOI] [PubMed] [Google Scholar]
  22. Hannon G. J., Demetrick D., Beach D. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 1993 Dec;7(12A):2378–2391. doi: 10.1101/gad.7.12a.2378. [DOI] [PubMed] [Google Scholar]
  23. Hynes M. J. Induction of the acetamidase of Aspergillus nidulans by acetate metabolism. J Bacteriol. 1977 Sep;131(3):770–775. doi: 10.1128/jb.131.3.770-775.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hynes M. J. Studies on the role of the areA gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Aust J Biol Sci. 1975 Jun;28(3):301–313. doi: 10.1071/bi9750301. [DOI] [PubMed] [Google Scholar]
  25. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katz M. E., Hynes M. J. Isolation and analysis of the acetate regulatory gene, facB, from Aspergillus nidulans. Mol Cell Biol. 1989 Dec;9(12):5696–5701. doi: 10.1128/mcb.9.12.5696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kinghorn J. R., Pateman J. A. Studies of partially repressed mutants at the tamA and areA loci in Aspergillus nidulans. Mol Gen Genet. 1975 Sep 29;140(2):137–147. doi: 10.1007/BF00329781. [DOI] [PubMed] [Google Scholar]
  28. Kudla B., Caddick M. X., Langdon T., Martinez-Rossi N. M., Bennett C. F., Sibley S., Davies R. W., Arst H. N., Jr The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 1990 May;9(5):1355–1364. doi: 10.1002/j.1460-2075.1990.tb08250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marzluf G. A. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev. 1997 Mar;61(1):17–32. doi: 10.1128/mmbr.61.1.17-32.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Minehart P. L., Magasanik B. Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol. 1991 Dec;11(12):6216–6228. doi: 10.1128/mcb.11.12.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oakley C. E., Weil C. F., Kretz P. L., Oakley B. R. Cloning of the riboB locus of Aspergillus nidulans. Gene. 1987;53(2-3):293–298. doi: 10.1016/0378-1119(87)90019-9. [DOI] [PubMed] [Google Scholar]
  32. Pan H., Feng B., Marzluf G. A. Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa. Mol Microbiol. 1997 Nov;26(4):721–729. doi: 10.1046/j.1365-2958.1997.6041979.x. [DOI] [PubMed] [Google Scholar]
  33. Parsons L. M., Davis M. A., Hynes M. J. Identification of functional regions of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Microbiol. 1992 Oct;6(20):2999–3007. doi: 10.1111/j.1365-2958.1992.tb01758.x. [DOI] [PubMed] [Google Scholar]
  34. Platt A., Langdon T., Arst H. N., Jr, Kirk D., Tollervey D., Sanchez J. M., Caddick M. X. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J. 1996 Jun 3;15(11):2791–2801. [PMC free article] [PubMed] [Google Scholar]
  35. Stanbrough M., Rowen D. W., Magasanik B. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9450–9454. doi: 10.1073/pnas.92.21.9450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Todd R. B., Kelly J. M., Davis M. A., Hynes M. J. Molecular characterization of mutants of the acetate regulatory gene facB of Aspergillus nidulans. Fungal Genet Biol. 1997 Oct;22(2):92–102. doi: 10.1006/fgbi.1997.1007. [DOI] [PubMed] [Google Scholar]
  37. Todd R. B., Murphy R. L., Martin H. M., Sharp J. A., Davis M. A., Katz M. E., Hynes M. J. The acetate regulatory gene facB of Aspergillus nidulans encodes a Zn(II)2Cys6 transcriptional activator. Mol Gen Genet. 1997 May 20;254(5):495–504. doi: 10.1007/s004380050444. [DOI] [PubMed] [Google Scholar]
  38. Xiao X., Fu Y. H., Marzluf G. A. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry. 1995 Jul 11;34(27):8861–8868. doi: 10.1021/bi00027a038. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES