Skip to main content
Genetics logoLink to Genetics
. 1999 Oct;153(2):721–729. doi: 10.1093/genetics/153.2.721

Eyespot-assembly mutants in Chlamydomonas reinhardtii.

M R Lamb 1, S K Dutcher 1, C K Worley 1, C L Dieckmann 1
PMCID: PMC1460774  PMID: 10511552

Abstract

Chlamydomonas reinhardtii is a single-celled green alga that phototaxes toward light by means of a light-sensitive organelle, the eyespot. The eyespot is composed of photoreceptor and Ca(++)-channel signal transduction components in the plasma membrane of the cell and reflective carotenoid pigment layers in an underlying region of the large chloroplast. To identify components important for the positioning and assembly of a functional eyespot, a large collection of nonphototactic mutants was screened for those with aberrant pigment spots. Four loci were identified. eye2 and eye3 mutants have no pigmented eyespots. min1 mutants have smaller than wild-type eyespots. mlt1(ptx4) mutants have multiple eyespots. The MIN1, MLT1(PTX4), and EYE2 loci are closely linked to each other; EYE3 is unlinked to the other three loci. The eye2 and eye3 mutants are epistatic to min1 and mlt1 mutations; all double mutants are eyeless. min1 mlt1 double mutants have a synthetic phenotype; they are eyeless or have very small, misplaced eyespots. Ultrastructural studies revealed that the min1 mutants are defective in the physical connection between the plasma membrane and the chloroplast envelope membranes in the region of the pigment granules. Characterization of these four loci will provide a beginning for the understanding of eyespot assembly and localization in the cell.

Full Text

The Full Text of this article is available as a PDF (459.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deininger W., Kröger P., Hegemann U., Lottspeich F., Hegemann P. Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J. 1995 Dec 1;14(23):5849–5858. doi: 10.1002/j.1460-2075.1995.tb00273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foster K. W., Smyth R. D. Light Antennas in phototactic algae. Microbiol Rev. 1980 Dec;44(4):572–630. doi: 10.1128/mr.44.4.572-630.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giberson R. T., Demaree R. S., Jr, Nordhausen R. W. Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique. J Vet Diagn Invest. 1997 Jan;9(1):61–67. doi: 10.1177/104063879700900111. [DOI] [PubMed] [Google Scholar]
  4. Holmes J. A., Dutcher S. K. Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci. 1989 Oct;94(Pt 2):273–285. doi: 10.1242/jcs.94.2.273. [DOI] [PubMed] [Google Scholar]
  5. Hoops H. J., Witman G. B. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol. 1983 Sep;97(3):902–908. doi: 10.1083/jcb.97.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kamiya R., Witman G. B. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol. 1984 Jan;98(1):97–107. doi: 10.1083/jcb.98.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kreimer G., Melkonian M. Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol. 1990 Oct;53(1):101–111. [PubMed] [Google Scholar]
  8. Matagne R. F. Fine structure of the arg-7 ciston in chlamydomonas reinhardi. Complementation between arg-7 mutants defective in argininosuccinate lyase. Mol Gen Genet. 1978 Mar 20;160(1):95–99. [PubMed] [Google Scholar]
  9. Melkonian M., Robenek H. Eyespot membranes of Chlamydomonas reinhardii: a freeze-fracture study. J Ultrastruct Res. 1980 Jul;72(1):90–102. doi: 10.1016/s0022-5320(80)90138-0. [DOI] [PubMed] [Google Scholar]
  10. Rüffer U., Nultsch W. Flagellar photoresponses of ptx1, a nonphototactic mutant of Chlamydomonas. Cell Motil Cytoskeleton. 1997;37(2):111–119. doi: 10.1002/(SICI)1097-0169(1997)37:2<111::AID-CM3>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  11. SAGER R., ZALOKAR M. Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature. 1958 Jul 12;182(4628):98–100. doi: 10.1038/182098a0. [DOI] [PubMed] [Google Scholar]
  12. Schaller K., Uhl R. A microspectrophotometric study of the shielding properties of eyespot and cell body in Chlamydomonas. Biophys J. 1997 Sep;73(3):1573–1578. doi: 10.1016/S0006-3495(97)78189-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smyth R. D., Martinek G. W., Ebersold W. T. Linkage of six genes in Chlamydomonas reinhardtii and the construction of linkage test strains. J Bacteriol. 1975 Dec;124(3):1615–1617. doi: 10.1128/jb.124.3.1615-1617.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Spreitzer R. J., Mets L. Photosynthesis-deficient Mutants of Chlamydomonas reinhardii with Associated Light-sensitive Phenotypes. Plant Physiol. 1981 Mar;67(3):565–569. doi: 10.1104/pp.67.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stavis R. L., Hirschberg R. Phototaxis in Chlamydomonas reinhardtii. J Cell Biol. 1973 Nov;59(2 Pt 1):367–377. doi: 10.1083/jcb.59.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES