Skip to main content
Genetics logoLink to Genetics
. 1999 Oct;153(2):949–964. doi: 10.1093/genetics/153.2.949

Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L.

D V Butruille 1, R P Guries 1, T C Osborn 1
PMCID: PMC1460775  PMID: 10511570

Abstract

Backcross populations are often used to study quantitative trait loci (QTL) after they are initially discovered in balanced populations, such as F(2), BC(1), or recombinant inbreds. While the latter are more powerful for mapping marker loci, the former have the reduced background genetic variation necessary for more precise estimation of QTL effects. Many populations of inbred backcross lines (IBLs) have been developed in plant and animal systems to permit simultaneous study and dissection of quantitative genetic variation introgressed from one source to another. Such populations have a genetic structure that can be used for linkage estimation and discovery of QTL. In this study, four populations of IBLs of oilseed Brassica napus were developed and analyzed to map genomic regions from the donor parent (a winter-type cultivar) that affect agronomic traits in spring-type inbreds and hybrids. Restriction fragment length polymorphisms (RFLPs) identified among the IBLs were used to calculate two-point recombination fractions and LOD scores through grid searches. This information allowed the enrichment of a composite genetic map of B. napus with 72 new RFLP loci. The selfed and hybrid progenies of the IBLs were evaluated during two growing seasons for several agronomic traits. Both pedigree structure and map information were incorporated into the QTL analysis by using a regression approach. The number of QTL detected for each trait and the number of effective factors calculated by using biometrical methods were of similar magnitude. Populations of IBLs were shown to be valuable for both marker mapping and QTL analysis.

Full Text

The Full Text of this article is available as a PDF (289.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. doi: 10.1073/pnas.93.26.15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Castle W. E. AN IMPROVED METHOD OF ESTIMATING THE NUMBER OF GENETIC FACTORS CONCERNED IN CASES OF BLENDING INHERITANCE. Science. 1921 Sep 9;54(1393):223–223. doi: 10.1126/science.54.1393.223. [DOI] [PubMed] [Google Scholar]
  3. Collins A., Teague J., Keats B. J., Morton N. E. Linkage map integration. Genomics. 1996 Aug 15;36(1):157–162. doi: 10.1006/geno.1996.0436. [DOI] [PubMed] [Google Scholar]
  4. Doebley J., Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorweiler J., Stec A., Kermicle J., Doebley J. Teosinte glume architecture 1: A Genetic Locus Controlling a Key Step in Maize Evolution. Science. 1993 Oct 8;262(5131):233–235. doi: 10.1126/science.262.5131.233. [DOI] [PubMed] [Google Scholar]
  6. Démant P., Hart A. A. Recombinant congenic strains--a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics. 1986;24(6):416–422. doi: 10.1007/BF00377961. [DOI] [PubMed] [Google Scholar]
  7. Eshed Y., Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics. 1996 Aug;143(4):1807–1817. doi: 10.1093/genetics/143.4.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howell P. M., Lydiate D. J., Marshall D. F. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome. 1996 Apr;39(2):348–358. doi: 10.1139/g96-045. [DOI] [PubMed] [Google Scholar]
  9. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  10. Liu Y. G., Mitsukawa N., Lister C., Dean C., Whittier R. F. Isolation and mapping of a new set of 129 RFLP markers in Arabidopsis thaliana using recombinant inbred lines. Plant J. 1996 Oct;10(4):733–736. doi: 10.1046/j.1365-313x.1996.10040733.x. [DOI] [PubMed] [Google Scholar]
  11. Osborn T. C., Kole C., Parkin I. A., Sharpe A. G., Kuiper M., Lydiate D. J., Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics. 1997 Jul;146(3):1123–1129. doi: 10.1093/genetics/146.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Parkin I. A., Sharpe A. G., Keith D. J., Lydiate D. J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome. 1995 Dec;38(6):1122–1131. doi: 10.1139/g95-149. [DOI] [PubMed] [Google Scholar]
  13. Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  15. Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sharpe A. G., Parkin I. A., Keith D. J., Lydiate D. J. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome. 1995 Dec;38(6):1112–1121. doi: 10.1139/g95-148. [DOI] [PubMed] [Google Scholar]
  17. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wehrhahn C, Allard R W. The Detection and Measurement of the Effects of Individual Genes Involved in the Inheritance of a Quantitative Character in Wheat. Genetics. 1965 Jan;51(1):109–119. doi: 10.1093/genetics/51.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES