Skip to main content
Genetics logoLink to Genetics
. 1999 Oct;153(2):731–742. doi: 10.1093/genetics/153.2.731

Characterization of seven genes affecting Caenorhabditis elegans hindgut development.

H M Chamberlin 1, K B Brown 1, P W Sternberg 1, J H Thomas 1
PMCID: PMC1460777  PMID: 10511553

Abstract

We have identified and characterized 12 mutations in seven genes that affect the development of the Caenorhabditis elegans hindgut. We find that the mutations can disrupt the postembryonic development of the male-specific blast cells within the hindgut, the hindgut morphology in both males and hermaphrodites, and in some cases, the expression of a hindgut marker in hermaphrodite animals. Mutations in several of the genes also affect viability. On the basis of their mutant phenotypes, we propose that the genes fall into four distinct classes: (1) egl-5 is required for regional identity of the tail; (2) sem-4 is required for a variety of ectodermal and mesodermal cell types, including cells in the hindgut; (3) two genes, lin-49 and lin-59, affect development of many cells, including hindgut; and (4) three genes, mab-9, egl-38, and lin-48, are required for patterning fates within the hindgut, making certain hindgut cells different from others. We also describe a new allele of the Pax gene egl-38 that is temperature sensitive and affects the conserved beta-hairpin of the EGL-38 paired domain. Our results suggest that a combination of different factors contribute to normal C. elegans hindgut development.

Full Text

The Full Text of this article is available as a PDF (356.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avery L., Horvitz H. R. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell. 1987 Dec 24;51(6):1071–1078. doi: 10.1016/0092-8674(87)90593-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barstead R. J., Kleiman L., Waterston R. H. Cloning, sequencing, and mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans. Cell Motil Cytoskeleton. 1991;20(1):69–78. doi: 10.1002/cm.970200108. [DOI] [PubMed] [Google Scholar]
  3. Basson M., Horvitz H. R. The Caenorhabditis elegans gene sem-4 controls neuronal and mesodermal cell development and encodes a zinc finger protein. Genes Dev. 1996 Aug 1;10(15):1953–1965. doi: 10.1101/gad.10.15.1953. [DOI] [PubMed] [Google Scholar]
  4. Bowerman B., Tax F. E., Thomas J. H., Priess J. R. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. Development. 1992 Dec;116(4):1113–1122. doi: 10.1242/dev.116.4.1113. [DOI] [PubMed] [Google Scholar]
  5. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chamberlin H. M., Palmer R. E., Newman A. P., Sternberg P. W., Baillie D. L., Thomas J. H. The PAX gene egl-38 mediates developmental patterning in Caenorhabditis elegans. Development. 1997 Oct;124(20):3919–3928. doi: 10.1242/dev.124.20.3919. [DOI] [PubMed] [Google Scholar]
  7. Chamberlin H. M., Sternberg P. W. Multiple cell interactions are required for fate specification during male spicule development in Caenorhabditis elegans. Development. 1993 Jun;118(2):297–324. doi: 10.1242/dev.118.2.297. [DOI] [PubMed] [Google Scholar]
  8. Chamberlin H. M., Sternberg P. W. The lin-3/let-23 pathway mediates inductive signalling during male spicule development in Caenorhabditis elegans. Development. 1994 Oct;120(10):2713–2721. doi: 10.1242/dev.120.10.2713. [DOI] [PubMed] [Google Scholar]
  9. Chisholm A. D., Hodgkin J. The mab-9 gene controls the fate of B, the major male-specific blast cell in the tail region of Caenorhabditis elegans. Genes Dev. 1989 Sep;3(9):1413–1423. doi: 10.1101/gad.3.9.1413. [DOI] [PubMed] [Google Scholar]
  10. Chisholm A. Control of cell fate in the tail region of C. elegans by the gene egl-5. Development. 1991 Apr;111(4):921–932. doi: 10.1242/dev.111.4.921. [DOI] [PubMed] [Google Scholar]
  11. Hoch M., Pankratz M. J. Control of gut development by fork head and cell signaling molecules in Drosophila. Mech Dev. 1996 Aug;58(1-2):3–14. doi: 10.1016/s0925-4773(96)00541-2. [DOI] [PubMed] [Google Scholar]
  12. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horner M. A., Quintin S., Domeier M. E., Kimble J., Labouesse M., Mango S. E. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 1998 Jul 1;12(13):1947–1952. doi: 10.1101/gad.12.13.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kalb J. M., Lau K. K., Goszczynski B., Fukushige T., Moons D., Okkema P. G., McGhee J. D. pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx. Development. 1998 Jun;125(12):2171–2180. doi: 10.1242/dev.125.12.2171. [DOI] [PubMed] [Google Scholar]
  15. Lambie E. J., Kimble J. Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development. 1991 May;112(1):231–240. doi: 10.1242/dev.112.1.231. [DOI] [PubMed] [Google Scholar]
  16. Liu K. S., Sternberg P. W. Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron. 1995 Jan;14(1):79–89. doi: 10.1016/0896-6273(95)90242-2. [DOI] [PubMed] [Google Scholar]
  17. Mango S. E., Lambie E. J., Kimble J. The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development. 1994 Oct;120(10):3019–3031. doi: 10.1242/dev.120.10.3019. [DOI] [PubMed] [Google Scholar]
  18. Pettitt J., Wood W. B., Plasterk R. H. cdh-3, a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in Caenorhabditis elegans. Development. 1996 Dec;122(12):4149–4157. doi: 10.1242/dev.122.12.4149. [DOI] [PubMed] [Google Scholar]
  19. Simon T. C., Gordon J. I. Intestinal epithelial cell differentiation: new insights from mice, flies and nematodes. Curr Opin Genet Dev. 1995 Oct;5(5):577–586. doi: 10.1016/0959-437x(95)80026-3. [DOI] [PubMed] [Google Scholar]
  20. Sulston J. E., Albertson D. G., Thomson J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol. 1980 Aug;78(2):542–576. doi: 10.1016/0012-1606(80)90352-8. [DOI] [PubMed] [Google Scholar]
  21. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  22. Trent C., Tsuing N., Horvitz H. R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. doi: 10.1093/genetics/104.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang B. B., Müller-Immergluck M. M., Austin J., Robinson N. T., Chisholm A., Kenyon C. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell. 1993 Jul 16;74(1):29–42. doi: 10.1016/0092-8674(93)90292-x. [DOI] [PubMed] [Google Scholar]
  24. Wheat W., Fitzsimmons D., Lennox H., Krautkramer S. R., Gentile L. N., McIntosh L. P., Hagman J. The highly conserved beta-hairpin of the paired DNA-binding domain is required for assembly of Pax-Ets ternary complexes. Mol Cell Biol. 1999 Mar;19(3):2231–2241. doi: 10.1128/mcb.19.3.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wheat W., Fitzsimmons D., Lennox H., Krautkramer S. R., Gentile L. N., McIntosh L. P., Hagman J. The highly conserved beta-hairpin of the paired DNA-binding domain is required for assembly of Pax-Ets ternary complexes. Mol Cell Biol. 1999 Mar;19(3):2231–2241. doi: 10.1128/mcb.19.3.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu L. H., Lengyel J. A. Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. Development. 1998 Jul;125(13):2433–2442. doi: 10.1242/dev.125.13.2433. [DOI] [PubMed] [Google Scholar]
  27. Xu W., Rould M. A., Jun S., Desplan C., Pabo C. O. Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell. 1995 Feb 24;80(4):639–650. doi: 10.1016/0092-8674(95)90518-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES