Skip to main content
Genetics logoLink to Genetics
. 1999 Oct;153(2):743–752. doi: 10.1093/genetics/153.2.743

A local, high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1.

J Jakubowski 1, K Kornfeld 1
PMCID: PMC1460782  PMID: 10511554

Abstract

Ras-mediated signaling is required for induction of vulval cell fates during Caenorhabditis elegans development. By screening for suppressors of the multivulva phenotype caused by constitutively active let-60 ras, we identified the mutation n2527. To clone the gene affected by n2527, we developed a method for high-resolution mapping. We took advantage of the genomic DNA sequence of the N2 strain by using DNA sequencing to scan for single-nucleotide polymorphisms (SNPs) at defined genomic positions of the RC301 strain. An average of one polymorphism per 1.4 kb was detected in predicted intergenic regions. Because of this high frequency, DNA sequencing is an efficient method to scan for SNPs. By alternating between identifying SNPs and mapping n2527 using selected recombinants, we generated an SNP map of progressively higher density. An intensive search for SNPs resulted in a local map with an average marker spacing of approximately 4 kb. This was used to map n2527 to a 9.6-kb interval. The small size of this interval made it feasible to use DNA sequencing to identify the molecular lesion. In principle, this approach can be used for high-resolution mapping of any C. elegans mutation. Furthermore, this approach can be applied to other species as the genomic sequence becomes available. The n2527 mutation affects a previously uncharacterized gene that we named cdf-1, as it encodes a predicted protein with significant similarity to members of the cation diffusion facilitator family.

Full Text

The Full Text of this article is available as a PDF (183.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barstead R. J., Kleiman L., Waterston R. H. Cloning, sequencing, and mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans. Cell Motil Cytoskeleton. 1991;20(1):69–78. doi: 10.1002/cm.970200108. [DOI] [PubMed] [Google Scholar]
  2. Beitel G. J., Clark S. G., Horvitz H. R. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature. 1990 Dec 6;348(6301):503–509. doi: 10.1038/348503a0. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  5. Conklin D. S., McMaster J. A., Culbertson M. R., Kung C. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Sep;12(9):3678–3688. doi: 10.1128/mcb.12.9.3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulondre C., Miller J. H. Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escherichia coli. J Mol Biol. 1977 Dec 15;117(3):577–606. doi: 10.1016/0022-2836(77)90059-6. [DOI] [PubMed] [Google Scholar]
  7. Coulson A., Waterston R., Kiff J., Sulston J., Kohara Y. Genome linking with yeast artificial chromosomes. Nature. 1988 Sep 8;335(6186):184–186. doi: 10.1038/335184a0. [DOI] [PubMed] [Google Scholar]
  8. Hodgkin J. Molecular cloning and duplication of the nematode sex-determining gene tra-1. Genetics. 1993 Mar;133(3):543–560. doi: 10.1093/genetics/133.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  10. Horvitz H. R., Sternberg P. W. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature. 1991 Jun 13;351(6327):535–541. doi: 10.1038/351535a0. [DOI] [PubMed] [Google Scholar]
  11. Jacobs D., Beitel G. J., Clark S. G., Horvitz H. R., Kornfeld K. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics. 1998 Aug;149(4):1809–1822. doi: 10.1093/genetics/149.4.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kamizono A., Nishizawa M., Teranishi Y., Murata K., Kimura A. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1989 Oct;219(1-2):161–167. doi: 10.1007/BF00261172. [DOI] [PubMed] [Google Scholar]
  13. Kimura K. D., Tissenbaum H. A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997 Aug 15;277(5328):942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  14. Kornfeld K., Guan K. L., Horvitz H. R. The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK. Genes Dev. 1995 Mar 15;9(6):756–768. doi: 10.1101/gad.9.6.756. [DOI] [PubMed] [Google Scholar]
  15. Kornfeld K., Hom D. B., Horvitz H. R. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell. 1995 Dec 15;83(6):903–913. doi: 10.1016/0092-8674(95)90206-6. [DOI] [PubMed] [Google Scholar]
  16. Kornfeld K. Vulval development in Caenorhabditis elegans. Trends Genet. 1997 Feb;13(2):55–61. doi: 10.1016/s0168-9525(97)01005-6. [DOI] [PubMed] [Google Scholar]
  17. Korswagen H. C., Durbin R. M., Smits M. T., Plasterk R. H. Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14680–14685. doi: 10.1073/pnas.93.25.14680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kwok P. Y., Deng Q., Zakeri H., Taylor S. L., Nickerson D. A. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics. 1996 Jan 1;31(1):123–126. doi: 10.1006/geno.1996.0019. [DOI] [PubMed] [Google Scholar]
  19. Lackner M. R., Kornfeld K., Miller L. M., Horvitz H. R., Kim S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 1994 Jan;8(2):160–173. doi: 10.1101/gad.8.2.160. [DOI] [PubMed] [Google Scholar]
  20. Lai E., Riley J., Purvis I., Roses A. A 4-Mb high-density single nucleotide polymorphism-based map around human APOE. Genomics. 1998 Nov 15;54(1):31–38. doi: 10.1006/geno.1998.5581. [DOI] [PubMed] [Google Scholar]
  21. Landegren U., Nilsson M., Kwok P. Y. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 1998 Aug;8(8):769–776. doi: 10.1101/gr.8.8.769. [DOI] [PubMed] [Google Scholar]
  22. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  24. Ruvkun G., Ambros V., Coulson A., Waterston R., Sulston J., Horvitz H. R. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics. 1989 Mar;121(3):501–516. doi: 10.1093/genetics/121.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Savage C., Hamelin M., Culotti J. G., Coulson A., Albertson D. G., Chalfie M. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 1989 Jun;3(6):870–881. doi: 10.1101/gad.3.6.870. [DOI] [PubMed] [Google Scholar]
  26. Wang D. G., Fan J. B., Siao C. J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998 May 15;280(5366):1077–1082. doi: 10.1126/science.280.5366.1077. [DOI] [PubMed] [Google Scholar]
  27. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES