Skip to main content
Genetics logoLink to Genetics
. 1999 Oct;153(2):1021–1027. doi: 10.1093/genetics/153.2.1021

The detection and measurement of recombination from sequence data.

J M Smith 1
PMCID: PMC1460795  PMID: 10511575

Abstract

There are two types of recombination that we may wish to detect: rare recombinants between members of different populations or species and repeated recombination within a population. Methods appropriate in the former context are inappropriate in the latter because they depend on recognizing the existence of runs of nucleotides with similar ancestry. If recombination is sufficiently frequent, no such runs will be present. Several methods, including the homoplasy test and the incompatibility test, are described that are appropriate for detecting repeated recombination and for measuring its importance, relative to mutation, in causing genetic change. The sensitivity of these tests is investigated by simulating populations with varying frequencies of mutation and recombination and calculating the various statistics on samples.

Full Text

The Full Text of this article is available as a PDF (105.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown A. H., Feldman M. W., Nevo E. Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. Genetics. 1980 Oct;96(2):523–536. doi: 10.1093/genetics/96.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dowson C. G., Jephcott A. E., Gough K. R., Spratt B. G. Penicillin-binding protein 2 genes of non-beta-lactamase-producing, penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol. 1989 Jan;3(1):35–41. doi: 10.1111/j.1365-2958.1989.tb00101.x. [DOI] [PubMed] [Google Scholar]
  3. Eyre-Walker A., Smith N. H., Smith J. M. How clonal are human mitochondria? Proc Biol Sci. 1999 Mar 7;266(1418):477–483. doi: 10.1098/rspb.1999.0662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guttman D. S., Dykhuizen D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. doi: 10.1126/science.7973728. [DOI] [PubMed] [Google Scholar]
  5. Hagelberg E., Goldman N., Lió P., Whelan S., Schiefenhövel W., Clegg J. B., Bowden D. K. Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proc Biol Sci. 1999 Mar 7;266(1418):485–492. doi: 10.1098/rspb.1999.0663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haubold B., Travisano M., Rainey P. B., Hudson R. R. Detecting linkage disequilibrium in bacterial populations. Genetics. 1998 Dec;150(4):1341–1348. doi: 10.1093/genetics/150.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hein J. Reconstructing evolution of sequences subject to recombination using parsimony. Math Biosci. 1990 Mar;98(2):185–200. doi: 10.1016/0025-5564(90)90123-g. [DOI] [PubMed] [Google Scholar]
  8. Holmes E. C., Urwin R., Maiden M. C. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol Biol Evol. 1999 Jun;16(6):741–749. doi: 10.1093/oxfordjournals.molbev.a026159. [DOI] [PubMed] [Google Scholar]
  9. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jakobsen I. B., Easteal S. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Comput Appl Biosci. 1996 Aug;12(4):291–295. doi: 10.1093/bioinformatics/12.4.291. [DOI] [PubMed] [Google Scholar]
  11. Jakobsen I. B., Wilson S. R., Easteal S. The partition matrix: exploring variable phylogenetic signals along nucleotide sequence alignments. Mol Biol Evol. 1997 May;14(5):474–484. doi: 10.1093/oxfordjournals.molbev.a025784. [DOI] [PubMed] [Google Scholar]
  12. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maynard Smith J., Smith N. H. Detecting recombination from gene trees. Mol Biol Evol. 1998 May;15(5):590–599. doi: 10.1093/oxfordjournals.molbev.a025960. [DOI] [PubMed] [Google Scholar]
  14. Sawyer S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989 Sep;6(5):526–538. doi: 10.1093/oxfordjournals.molbev.a040567. [DOI] [PubMed] [Google Scholar]
  15. Smith J. M. Analyzing the mosaic structure of genes. J Mol Evol. 1992 Feb;34(2):126–129. doi: 10.1007/BF00182389. [DOI] [PubMed] [Google Scholar]
  16. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spratt B. G., Bowler L. D., Zhang Q. Y., Zhou J., Smith J. M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol. 1992 Feb;34(2):115–125. doi: 10.1007/BF00182388. [DOI] [PubMed] [Google Scholar]
  18. Suerbaum S., Smith J. M., Bapumia K., Morelli G., Smith N. H., Kunstmann E., Dyrek I., Achtman M. Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12619–12624. doi: 10.1073/pnas.95.21.12619. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES