Skip to main content
Genetics logoLink to Genetics
. 1999 Nov;153(3):1475–1489. doi: 10.1093/genetics/153.3.1475

Effect of selection against deleterious mutations on the decline in heterozygosity at neutral loci in closely inbreeding populations.

J Wang 1, W G Hill 1
PMCID: PMC1460809  PMID: 10545475

Abstract

Transition matrices for selfing and full-sib mating were derived to investigate the effect of selection against deleterious mutations on the process of inbreeding at a linked neutral locus. Selection was allowed to act within lines only (selection type I) or equally within and between lines (type II). For selfing lines under selection type I, inbreeding is always retarded, the retardation being determined by the recombination fraction between the neutral and selected loci and the inbreeding depression from the selected locus, irrespective of the selection coefficient (s) and dominance coefficient (h) of the mutant allele. For selfing under selection type II or full-sib mating under both selection types, inbreeding is delayed by weak selection (small s and sh), due to the associative overdominance created at the neutral locus, and accelerated by strong selection, due to the elevated differential contributions between alternative alleles at the neutral locus within individuals and between lines (for selection type II). For multiple fitness loci under selection, stochastic simulations were run for populations with selfing, full-sib mating, and random mating, using empirical estimates of mutation parameters and inbreeding load in Drosophila. The simulations results are in general compatible with empirical observations.

Full Text

The Full Text of this article is available as a PDF (157.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Charlesworth B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res. 1996 Oct;68(2):131–149. doi: 10.1017/s0016672300034029. [DOI] [PubMed] [Google Scholar]
  2. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eriksson K., Halkka O., Lokki J., Saura A. Enzyme polymorphism in feral, outbred and inbred rats (Rattus norvegicus). Heredity (Edinb) 1976 Dec;37(3):341–349. doi: 10.1038/hdy.1976.98. [DOI] [PubMed] [Google Scholar]
  4. Johnston M. O., Schoen D. J. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. doi: 10.1126/science.267.5195.226. [DOI] [PubMed] [Google Scholar]
  5. Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Latter B. D., Mulley J. C. Genetic adaptation to captivity and inbreeding depression in small laboratory populations of Drosophila melanogaster. Genetics. 1995 Jan;139(1):255–266. doi: 10.1093/genetics/139.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Latter B. D., Mulley J. C., Reid D., Pascoe L. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster. Genetics. 1995 Jan;139(1):287–297. doi: 10.1093/genetics/139.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McGoldrick D. J., Hedgecock D. Fixation, segregation and linkage of allozyme loci in inbred families of the Pacific oyster Crassostrea gigas (Thunberg): implications for the causes of inbreeding depression. Genetics. 1997 May;146(1):321–334. doi: 10.1093/genetics/146.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mina N. S., Sheldon B. L., Yoo B. H., Frankham R. Heterozygosity at protein loci in inbred and outbred lines of chickens. Poult Sci. 1991 Sep;70(9):1864–1872. doi: 10.3382/ps.0701864. [DOI] [PubMed] [Google Scholar]
  11. Morton N. E., Crow J. F., Muller H. J. AN ESTIMATE OF THE MUTATIONAL DAMAGE IN MAN FROM DATA ON CONSANGUINEOUS MARRIAGES. Proc Natl Acad Sci U S A. 1956 Nov;42(11):855–863. doi: 10.1073/pnas.42.11.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. Genetics. 1969 Mar;61(3):749–761. doi: 10.1093/genetics/61.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ota T., Cockerham C. C. Detrimental genes with partial selfing and effects on a neutral locus. Genet Res. 1974 Apr;23(2):191–200. doi: 10.1017/s0016672300014816. [DOI] [PubMed] [Google Scholar]
  15. REEVE E. C., GOWER J. C. Inbreeding with selection and linkage. II. Sibmating. Ann Hum Genet. 1958 Nov;23(1):36–49. doi: 10.1111/j.1469-1809.1958.tb01440.x. [DOI] [PubMed] [Google Scholar]
  16. REEVE E. C. Inbreeding with selection and linkage. I. Selfing. Ann Hum Genet. 1957 Mar;21(3):277–288. doi: 10.1111/j.1469-1809.1972.tb00288.x. [DOI] [PubMed] [Google Scholar]
  17. Rohrer G. A., Alexander L. J., Hu Z., Smith T. P., Keele J. W., Beattie C. W. A comprehensive map of the porcine genome. Genome Res. 1996 May;6(5):371–391. doi: 10.1101/gr.6.5.371. [DOI] [PubMed] [Google Scholar]
  18. Rumball W., Franklin I. R., Frankham R., Sheldon B. L. Decline in heterozygosity under full-sib and double first-cousin inbreeding in Drosophila melanogaster. Genetics. 1994 Mar;136(3):1039–1049. doi: 10.1093/genetics/136.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Santiago E., Caballero A. Effective size of populations under selection. Genetics. 1995 Feb;139(2):1013–1030. doi: 10.1093/genetics/139.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  21. Sing C. F., Brewer G. J., Thirtle B. Inherited biochemical variation in Drosophila melanogaster: noise or signal? I. Single-locus analysis. Genetics. 1973 Oct;75(2):381–404. doi: 10.1093/genetics/75.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  23. Stephan W., Langley C. H. DNA polymorphism in lycopersicon and crossing-over per physical length. Genetics. 1998 Dec;150(4):1585–1593. doi: 10.1093/genetics/150.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Strauss S. H. Heterosis at Allozyme Loci under Inbreeding and Crossbreeding in PINUS ATTENUATA. Genetics. 1986 May;113(1):115–134. doi: 10.1093/genetics/113.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strobeck C. Partial selfing and linkage: the effect of a heterotic locus on a neutral locus. Genetics. 1979 May;92(1):305–315. doi: 10.1093/genetics/92.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weir B. S., Cockerham C. C. Mixed self and random mating at two loci. Genet Res. 1973 Jun;21(3):247–262. doi: 10.1017/s0016672300013446. [DOI] [PubMed] [Google Scholar]
  27. Wray N. R., Thompson R. Prediction of rates of inbreeding in selected populations. Genet Res. 1990 Feb;55(1):41–54. doi: 10.1017/s0016672300025180. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES