Skip to main content
Genetics logoLink to Genetics
. 1999 Nov;153(3):1271–1283. doi: 10.1093/genetics/153.3.1271

Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast.

J Zalevsky 1, A J MacQueen 1, J B Duffy 1, K J Kemphues 1, A M Villeneuve 1
PMCID: PMC1460811  PMID: 10545458

Abstract

Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showing that him-14 functions during the pachytene stage, indicate that him-14 is not needed to establish pairing or synapsis and likely has a more direct role in crossover formation. him-14 encodes a germline-specific member of the MutS family of DNA mismatch repair (MMR) proteins. him-14 has no apparent role in MMR, but like its Saccharomyces cerevisiae ortholog MSH4, has a specialized role in promoting crossing over during meiosis. Despite this conservation, worms and yeast differ significantly in their reliance on this pathway: whereas worms use this pathway to generate most, if not all, crossovers, yeast still form 30-50% of their normal number of crossovers when this pathway is absent. This differential reliance may reflect differential stability of crossover-competent recombination intermediates, or alternatively, the presence of two different pathways for crossover formation in yeast, only one of which predominates during nematode meiosis. We discuss a model in which HIM-14 promotes crossing over by interfering with Holliday junction branch migration.

Full Text

The Full Text of this article is available as a PDF (458.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Sokolsky T., Studamire B., Miret J. J., Lahue R. S. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol. 1997 May;17(5):2436–2447. doi: 10.1128/mcb.17.5.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. doi: 10.1128/mcb.16.10.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albertson D. G., Fishpool R. M., Birchall P. S. Fluorescence in situ hybridization for the detection of DNA and RNA. Methods Cell Biol. 1995;48:339–364. doi: 10.1016/s0091-679x(08)61395-3. [DOI] [PubMed] [Google Scholar]
  4. Barnes T. M., Kohara Y., Coulson A., Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995 Sep;141(1):159–179. doi: 10.1093/genetics/141.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackwell L. J., Martik D., Bjornson K. P., Bjornson E. S., Modrich P. Nucleotide-promoted release of hMutSalpha from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J Biol Chem. 1998 Nov 27;273(48):32055–32062. doi: 10.1074/jbc.273.48.32055. [DOI] [PubMed] [Google Scholar]
  6. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byers B., Goetsch L. Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5056–5060. doi: 10.1073/pnas.72.12.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  9. Chua P. R., Roeder G. S. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell. 1998 May 1;93(3):349–359. doi: 10.1016/s0092-8674(00)81164-2. [DOI] [PubMed] [Google Scholar]
  10. Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A. M. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998 Aug 7;94(3):387–398. doi: 10.1016/s0092-8674(00)81481-6. [DOI] [PubMed] [Google Scholar]
  11. Dernburg A. F., Sedat J. W. Mapping three-dimensional chromosome architecture in situ. Methods Cell Biol. 1998;53:187–233. doi: 10.1016/s0091-679x(08)60880-8. [DOI] [PubMed] [Google Scholar]
  12. Edgar L. G. Blastomere culture and analysis. Methods Cell Biol. 1995;48:303–321. doi: 10.1016/s0091-679x(08)61393-x. [DOI] [PubMed] [Google Scholar]
  13. Gilbertson L. A., Stahl F. W. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics. 1996 Sep;144(1):27–41. doi: 10.1093/genetics/144.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein P., Slaton D. E. The synaptonemal complexes of caenorhabditis elegans: comparison of wild-type and mutant strains and pachytene karyotype analysis of wild-type. Chromosoma. 1982;84(4):585–597. doi: 10.1007/BF00292857. [DOI] [PubMed] [Google Scholar]
  15. Gradia S., Subramanian D., Wilson T., Acharya S., Makhov A., Griffith J., Fishel R. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell. 1999 Feb;3(2):255–261. doi: 10.1016/s1097-2765(00)80316-0. [DOI] [PubMed] [Google Scholar]
  16. Gumienny T. L., Lambie E., Hartwieg E., Horvitz H. R., Hengartner M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development. 1999 Feb;126(5):1011–1022. doi: 10.1242/dev.126.5.1011. [DOI] [PubMed] [Google Scholar]
  17. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hollingsworth N. M., Ponte L., Halsey C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 1995 Jul 15;9(14):1728–1739. doi: 10.1101/gad.9.14.1728. [DOI] [PubMed] [Google Scholar]
  19. Hunter N., Borts R. H. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 1997 Jun 15;11(12):1573–1582. doi: 10.1101/gad.11.12.1573. [DOI] [PubMed] [Google Scholar]
  20. Keeney S., Giroux C. N., Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997 Feb 7;88(3):375–384. doi: 10.1016/s0092-8674(00)81876-0. [DOI] [PubMed] [Google Scholar]
  21. Kemphues K. J., Kusch M., Wolf N. Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics. 1988 Dec;120(4):977–986. doi: 10.1093/genetics/120.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kleckner N. Meiosis: how could it work? Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8167–8174. doi: 10.1073/pnas.93.16.8167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kohara Y. [Large scale analysis of C. elegans cDNA]. Tanpakushitsu Kakusan Koso. 1996 Apr;41(5):715–720. [PubMed] [Google Scholar]
  24. Labouesse M., Sookhareea S., Horvitz H. R. The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development. 1994 Sep;120(9):2359–2368. doi: 10.1242/dev.120.9.2359. [DOI] [PubMed] [Google Scholar]
  25. McKim K. S., Green-Marroquin B. L., Sekelsky J. J., Chin G., Steinberg C., Khodosh R., Hawley R. S. Meiotic synapsis in the absence of recombination. Science. 1998 Feb 6;279(5352):876–878. doi: 10.1126/science.279.5352.876. [DOI] [PubMed] [Google Scholar]
  26. McKim K. S., Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 1998 Sep 15;12(18):2932–2942. doi: 10.1101/gad.12.18.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paquis-Flucklinger V., Santucci-Darmanin S., Paul R., Saunières A., Turc-Carel C., Desnuelle C. Cloning and expression analysis of a meiosis-specific MutS homolog: the human MSH4 gene. Genomics. 1997 Sep 1;44(2):188–194. doi: 10.1006/geno.1997.4857. [DOI] [PubMed] [Google Scholar]
  28. Pochart P., Woltering D., Hollingsworth N. M. Conserved properties between functionally distinct MutS homologs in yeast. J Biol Chem. 1997 Nov 28;272(48):30345–30349. doi: 10.1074/jbc.272.48.30345. [DOI] [PubMed] [Google Scholar]
  29. Rockmill B., Sym M., Scherthan H., Roeder G. S. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 1995 Nov 1;9(21):2684–2695. doi: 10.1101/gad.9.21.2684. [DOI] [PubMed] [Google Scholar]
  30. Roeder G. S. Meiotic chromosomes: it takes two to tango. Genes Dev. 1997 Oct 15;11(20):2600–2621. doi: 10.1101/gad.11.20.2600. [DOI] [PubMed] [Google Scholar]
  31. Ross-Macdonald P., Roeder G. S. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell. 1994 Dec 16;79(6):1069–1080. doi: 10.1016/0092-8674(94)90037-x. [DOI] [PubMed] [Google Scholar]
  32. Sym M., Roeder G. S. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell. 1994 Oct 21;79(2):283–292. doi: 10.1016/0092-8674(94)90197-x. [DOI] [PubMed] [Google Scholar]
  33. Telenius H., Carter N. P., Bebb C. E., Nordenskjöld M., Ponder B. A., Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992 Jul;13(3):718–725. doi: 10.1016/0888-7543(92)90147-k. [DOI] [PubMed] [Google Scholar]
  34. Villeneuve A. M. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics. 1994 Mar;136(3):887–902. doi: 10.1093/genetics/136.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vollrath D., Davis R. W. Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Res. 1987 Oct 12;15(19):7865–7876. doi: 10.1093/nar/15.19.7865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weiner B. M., Kleckner N. Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell. 1994 Jul 1;77(7):977–991. doi: 10.1016/0092-8674(94)90438-3. [DOI] [PubMed] [Google Scholar]
  37. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zetka M. C., Rose A. M. Mutant rec-1 eliminates the meiotic pattern of crossing over in Caenorhabditis elegans. Genetics. 1995 Dec;141(4):1339–1349. doi: 10.1093/genetics/141.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES