Skip to main content
Genetics logoLink to Genetics
. 1999 Nov;153(3):1385–1394. doi: 10.1093/genetics/153.3.1385

Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element.

M Schartl 1, U Hornung 1, H Gutbrod 1, J N Volff 1, J Wittbrodt 1
PMCID: PMC1460825  PMID: 10545466

Abstract

The overexpression of the Xmrk oncogene (ONC-Xmrk) in pigment cells of certain Xiphophorus hybrids has been found to be the primary change that results in the formation of malignant melanoma. Spontaneous mutant stocks have been isolated that have lost the ability to induce tumor formation when crossed with Xiphophorus helleri. Two of these loss-of-function mutants were analyzed for genetic defects in ONC-Xmrk's. In the lof-1 mutant a novel transposable element, TX-1, has jumped into ONC-Xmrk, leading to a disruption of the gene and a truncated protein product lacking the carboxyterminal domain of the receptor tyrosine kinase. TX-1 is obviously an active LTR-containing retrotransposon in Xiphophorus that was not found in other fish species outside the family Poeciliidae. Surprisingly, it does not encode any protein, suggesting the existence of a helper function for this retroelement. In the lof-2 mutant the entire ONC-Xmrk gene was found to be deleted. These data show that ONC-Xmrk is indeed the tumor-inducing gene of Xiphophorus and thus the critical constituent of the tumor (Tu) locus.

Full Text

The Full Text of this article is available as a PDF (432.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam D., Dimitrijevic N., Schartl M. Tumor suppression in Xiphophorus by an accidentally acquired promoter. Science. 1993 Feb 5;259(5096):816–819. doi: 10.1126/science.8430335. [DOI] [PubMed] [Google Scholar]
  2. Adam D., Mäueler W., Schartl M. Transcriptional activation of the melanoma inducing Xmrk oncogene in Xiphophorus. Oncogene. 1991 Jan;6(1):73–80. [PubMed] [Google Scholar]
  3. Anders F. Contributions of the Gordon-Kosswig melanoma system to the present concept of neoplasia. Pigment Cell Res. 1991 Feb;4(1):7–29. doi: 10.1111/j.1600-0749.1991.tb00309.x. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Gutbrod H., Schartl M. Intragenic sex-chromosomal crossovers of Xmrk oncogene alleles affect pigment pattern formation and the severity of melanoma in Xiphophorus. Genetics. 1999 Feb;151(2):773–783. doi: 10.1093/genetics/151.2.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hong Y., Winkler C., Schartl M. Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donor genotype and passage number. Dev Genes Evol. 1998 Dec;208(10):595–602. doi: 10.1007/s004270050220. [DOI] [PubMed] [Google Scholar]
  7. Kazianis S., Gutbrod H., Nairn R. S., McEntire B. B., Della Coletta L., Walter R. B., Borowsky R. L., Woodhead A. D., Setlow R. B., Schartl M. Localization of a CDKN2 gene in linkage group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor. Genes Chromosomes Cancer. 1998 Jul;22(3):210–220. [PubMed] [Google Scholar]
  8. Kazianis S., Gutbrod H., Nairn R. S., McEntire B. B., Della Coletta L., Walter R. B., Borowsky R. L., Woodhead A. D., Setlow R. B., Schartl M. Localization of a CDKN2 gene in linkage group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor. Genes Chromosomes Cancer. 1998 Jul;22(3):210–220. [PubMed] [Google Scholar]
  9. Koga A., Hori H. Albinism due to transposable element insertion in fish. Pigment Cell Res. 1997 Dec;10(6):377–381. doi: 10.1111/j.1600-0749.1997.tb00695.x. [DOI] [PubMed] [Google Scholar]
  10. Mäueler W., Schartl A., Schartl M. Different expression patterns of oncogenes and proto-oncogenes in hereditary and carcinogen-induced tumors of Xiphophorus. Int J Cancer. 1993 Sep 9;55(2):288–296. doi: 10.1002/ijc.2910550220. [DOI] [PubMed] [Google Scholar]
  11. Nairn R. S., Kazianis S., McEntire B. B., Della Coletta L., Walter R. B., Morizot D. C. A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13042–13047. doi: 10.1073/pnas.93.23.13042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paulson K. E., Deka N., Schmid C. W., Misra R., Schindler C. W., Rush M. G., Kadyk L., Leinwand L. A transposon-like element in human DNA. Nature. 1985 Jul 25;316(6026):359–361. doi: 10.1038/316359a0. [DOI] [PubMed] [Google Scholar]
  13. Schartl A., Malitschek B., Kazianis S., Borowsky R., Schartl M. Spontaneous melanoma formation in nonhybrid Xiphophorus. Cancer Res. 1995 Jan 1;55(1):159–165. [PubMed] [Google Scholar]
  14. Schulte-Merker S., van Eeden F. J., Halpern M. E., Kimmel C. B., Nüsslein-Volhard C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 1994 Apr;120(4):1009–1015. doi: 10.1242/dev.120.4.1009. [DOI] [PubMed] [Google Scholar]
  15. Schulte-Merker S., van Eeden F. J., Halpern M. E., Kimmel C. B., Nüsslein-Volhard C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 1994 Apr;120(4):1009–1015. doi: 10.1242/dev.120.4.1009. [DOI] [PubMed] [Google Scholar]
  16. Sonigo P., Wain-Hobson S., Bougueleret L., Tiollais P., Jacob F., Brûlet P. Nucleotide sequence and evolution of ETn elements. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3768–3771. doi: 10.1073/pnas.84.11.3768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weis S., Schartl M. The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus. Genetics. 1998 Aug;149(4):1909–1920. doi: 10.1093/genetics/149.4.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wellbrock C., Fischer P., Schartl M. PI3-kinase is involved in mitogenic signaling by the oncogenic receptor tyrosine kinase Xiphophorus melanoma receptor kinase in fish melanoma. Exp Cell Res. 1999 Sep 15;251(2):340–349. doi: 10.1006/excr.1999.4580. [DOI] [PubMed] [Google Scholar]
  19. Winkler C., Wittbrodt J., Lammers R., Ullrich A., Schartl M. Ligand-dependent tumor induction in medakafish embryos by a Xmrk receptor tyrosine kinase transgene. Oncogene. 1994 Jun;9(6):1517–1525. [PubMed] [Google Scholar]
  20. Wittbrodt J., Adam D., Malitschek B., Mäueler W., Raulf F., Telling A., Robertson S. M., Schartl M. Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature. 1989 Oct 5;341(6241):415–421. doi: 10.1038/341415a0. [DOI] [PubMed] [Google Scholar]
  21. Wittbrodt J., Lammers R., Malitschek B., Ullrich A., Schartl M. The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. EMBO J. 1992 Nov;11(11):4239–4246. doi: 10.1002/j.1460-2075.1992.tb05518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woolcock B. W., Schmidt B. M., Kallman K. D., Vielkind J. R. Differences in transcription and promoters of Xmrk-1 and Xmrk-2 genes suggest a role for Xmrk-2 in pigment pattern development in the platyfish, Xiphophorus maculatus. Cell Growth Differ. 1994 Jun;5(6):575–583. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES