Skip to main content
Genetics logoLink to Genetics
. 1999 Nov;153(3):1411–1421. doi: 10.1093/genetics/153.3.1411

Suppressors of systemin signaling identify genes in the tomato wound response pathway.

G A Howe 1, C A Ryan 1
PMCID: PMC1460835  PMID: 10545469

Abstract

In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2).

Full Text

The Full Text of this article is available as a PDF (351.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergey D. R., Howe G. A., Ryan C. A. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12053–12058. doi: 10.1073/pnas.93.22.12053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birkenmeier GF, Ryan CA. Wound signaling in tomato plants. Evidence that aba is not a primary signal for defense gene activation . Plant Physiol. 1998 Jun;117(2):687–693. doi: 10.1104/pp.117.2.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conconi A., Miquel M., Browse J. A., Ryan C. A. Intracellular Levels of Free Linolenic and Linoleic Acids Increase in Tomato Leaves in Response to Wounding. Plant Physiol. 1996 Jul;111(3):797–803. doi: 10.1104/pp.111.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Constabel C. P., Bergey D. R., Ryan C. A. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):407–411. doi: 10.1073/pnas.92.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green T. R., Ryan C. A. Wound-Induced Proteinase Inhibitor in Plant Leaves: A Possible Defense Mechanism against Insects. Science. 1972 Feb 18;175(4023):776–777. doi: 10.1126/science.175.4023.776. [DOI] [PubMed] [Google Scholar]
  7. Harms K., Atzorn R., Brash A., Kuhn H., Wasternack C., Willmitzer L., Pena-Cortes H. Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes. Plant Cell. 1995 Oct;7(10):1645–1654. doi: 10.1105/tpc.7.10.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howe G. A., Lightner J., Browse J., Ryan C. A. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell. 1996 Nov;8(11):2067–2077. doi: 10.1105/tpc.8.11.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laudert D., Weiler E. W. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J. 1998 Sep;15(5):675–684. doi: 10.1046/j.1365-313x.1998.00245.x. [DOI] [PubMed] [Google Scholar]
  10. Lightner J., Pearce G., Ryan C. A., Browse J. Isolation of signaling mutants of tomato (Lycopersicon esculentum). Mol Gen Genet. 1993 Dec;241(5-6):595–601. doi: 10.1007/BF00279902. [DOI] [PubMed] [Google Scholar]
  11. McGurl B., Orozco-Cardenas M., Pearce G., Ryan C. A. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9799–9802. doi: 10.1073/pnas.91.21.9799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McGurl B., Pearce G., Orozco-Cardenas M., Ryan C. A. Structure, expression, and antisense inhibition of the systemin precursor gene. Science. 1992 Mar 20;255(5051):1570–1573. doi: 10.1126/science.1549783. [DOI] [PubMed] [Google Scholar]
  13. Meindl T., Boller T., Felix G. The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell. 1998 Sep;10(9):1561–1570. doi: 10.1105/tpc.10.9.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science. 1996 Dec 13;274(5294):1914–1917. doi: 10.1126/science.274.5294.1914. [DOI] [PubMed] [Google Scholar]
  15. Pearce G., Strydom D., Johnson S., Ryan C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991 Aug 23;253(5022):895–897. doi: 10.1126/science.253.5022.895. [DOI] [PubMed] [Google Scholar]
  16. Penninckx I. A., Thomma B. P., Buchala A., Métraux J. P., Broekaert W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 1998 Dec;10(12):2103–2113. doi: 10.1105/tpc.10.12.2103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ryan C. A. Quantitative determination of soluble cellular proteins by radial diffusion in agar gels containing antibodies. Anal Biochem. 1967 Jun;19(3):434–440. doi: 10.1016/0003-2697(67)90233-3. [DOI] [PubMed] [Google Scholar]
  18. Schaller A., Ryan C. A. Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having Kex2p-like properties. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11802–11806. doi: 10.1073/pnas.91.25.11802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stratmann J. W., Ryan C. A. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11085–11089. doi: 10.1073/pnas.94.20.11085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wissemann K. W., Montgomery M. W. Purification of d'Anjou Pear (Pyrus communis L.) Polyphenol Oxidase. Plant Physiol. 1985 Jun;78(2):256–262. doi: 10.1104/pp.78.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES