Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1973–1988. doi: 10.1093/genetics/153.4.1973

Effect of DNA sequence divergence on homologous recombination as analyzed by a random-walk model.

Y Fujitani 1, I Kobayashi 1
PMCID: PMC1460839  PMID: 10581300

Abstract

A point connecting a pair of homologous regions of DNA duplexes moves along the homology in a reaction intermediate of the homologous recombination. Formulating this movement as a random walk, we were previously successful at explaining the dependence of the recombination frequency on the homology length. Recently, the dependence of the recombination frequency on the DNA sequence divergence in the homologous region was investigated experimentally; if the methyl-directed mismatch repair (MMR) system is active, the logarithm of the recombination frequency decreases very rapidly with an increase of the divergence in a low-divergence regime. Beyond this regime, the logarithm decreases slowly and linearly with the divergence. This "very rapid drop-off" is not observed when the MMR system is defective. In this article, we show that our random-walk model can explain these data in a straightforward way. When a connecting point encounters a diverged base pair, it is assumed to be destroyed with a probability that depends on the level of MMR activity.

Full Text

The Full Text of this article is available as a PDF (245.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn B. Y., Dornfeld K. J., Fagrelius T. J., Livingston D. M. Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol Cell Biol. 1988 Jun;8(6):2442–2448. doi: 10.1128/mcb.8.6.2442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Datta A., Hendrix M., Lipsitch M., Jinks-Robertson S. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9757–9762. doi: 10.1073/pnas.94.18.9757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deng C., Capecchi M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol. 1992 Aug;12(8):3365–3371. doi: 10.1128/mcb.12.8.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ernst K. Frontier School graduates 94th class as "Kitty" Ernst describes the promise of midwifery. Front Nurs Serv Q Bull. 1984 Spring;59(4):6-7, 10. [PubMed] [Google Scholar]
  5. Fincham J. R., Holliday R. An explanation of fine structure map expansion in terms of excision repair. Mol Gen Genet. 1970;109(4):309–322. doi: 10.1007/BF00267701. [DOI] [PubMed] [Google Scholar]
  6. Fujitani Y., Kobayashi I. Mismatch-stimulated destruction of intermediates as an explanation for map expansion in genetic recombination. J Theor Biol. 1997 Dec 21;189(4):443–447. doi: 10.1006/jtbi.1997.0576. [DOI] [PubMed] [Google Scholar]
  7. Fujitani Y., Yamamoto K., Kobayashi I. Dependence of frequency of homologous recombination on the homology length. Genetics. 1995 Jun;140(2):797–809. doi: 10.1093/genetics/140.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujitani Y, Kobayashi I., I Random-walk model of homologous recombination. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Dec;52(6):6607–6622. doi: 10.1103/physreve.52.6607. [DOI] [PubMed] [Google Scholar]
  9. Jinks-Robertson S., Michelitch M., Ramcharan S. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jul;13(7):3937–3950. doi: 10.1128/mcb.13.7.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Majewski J., Cohan F. M. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics. 1998 Jan;148(1):13–18. doi: 10.1093/genetics/148.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Panyutin I. G., Hsieh P. Formation of a single base mismatch impedes spontaneous DNA branch migration. J Mol Biol. 1993 Mar 20;230(2):413–424. doi: 10.1006/jmbi.1993.1159. [DOI] [PubMed] [Google Scholar]
  12. Porter G., Westmoreland J., Priebe S., Resnick M. A. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2. Genetics. 1996 Jun;143(2):755–767. doi: 10.1093/genetics/143.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roberts M. S., Cohan F. M. The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics. 1993 Jun;134(2):401–408. doi: 10.1093/genetics/134.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Samii M., von Wild K. Operative treatment of lesions in the region of the tentorial notch. Neurosurg Rev. 1981;4(1):3–10. doi: 10.1007/BF01787227. [DOI] [PubMed] [Google Scholar]
  15. Shen P., Huang H. V. Effect of base pair mismatches on recombination via the RecBCD pathway. Mol Gen Genet. 1989 Aug;218(2):358–360. doi: 10.1007/BF00331291. [DOI] [PubMed] [Google Scholar]
  16. Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson B. J., Camien M. N., Warner R. C. Kinetics of branch migration in double-stranded DNA. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2299–2303. doi: 10.1073/pnas.73.7.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vulić M., Dionisio F., Taddei F., Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9763–9767. doi: 10.1073/pnas.94.18.9763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Waldman A. S., Liskay R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988 Dec;8(12):5350–5357. doi: 10.1128/mcb.8.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zawadzki P., Roberts M. S., Cohan F. M. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics. 1995 Jul;140(3):917–932. doi: 10.1093/genetics/140.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES