Abstract
The extremely homogeneous organization of the transposon family Tam3 in Antirrhinum majus is in sharp contrast to the heterogeneity of the copies constituting many other transposon families. To address the issue of the Tam3 structural uniformity, we examined two possibilities: (1) recent invasion of Tam3 and (2) failure of gap repair, which is involved in conversion from autonomous forms to defective forms. The phylogenetic analysis of 17 Tam3 copies suggested that the invasion of Tam3 into the Antirrhinum genome occurred at least 5 mya, which is sufficiently long ago to have produced many aberrant copies by gap repair. Thus, we investigated gap repair events at the nivea(recurrens:Tam3) (niv(rec)::Tam3) allele, where Tam3 is actively excised. We show here that the gap repair of de novo somatic Tam3 excision was arrested immediately after initiation of the process. All of the identified gap repair products were short stretches, no longer than 150 bp from the ends. The Tam3 ends have hairpin structures with low free energies. We observed that the gap repair halted within the hairpin structure regions. Such small gap repair products appear to be distributed in the Antirrhinum genome, but are unlikely to be active. Our data strongly suggest that the structural homogeneity of Tam3 was caused by immunity to gap repair at the hairpins in both of the end regions. The frequency of extensive gap repair of de novo excision products in eukaryotic transposons was found to be correlated with the free energies of the secondary structures in the end regions. This fact suggests that the fates of transposon families might depend on the structures of their ends.
Full Text
The Full Text of this article is available as a PDF (208.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Doseff A., Martienssen R., Sundaresan V. Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res. 1991 Feb 11;19(3):579–584. doi: 10.1093/nar/19.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Döring H. P., Starlinger P. Molecular genetics of transposable elements in plants. Annu Rev Genet. 1986;20:175–200. doi: 10.1146/annurev.ge.20.120186.001135. [DOI] [PubMed] [Google Scholar]
- Döring H. P., Tillmann E., Starlinger P. DNA sequence of the maize transposable element Dissociation. Nature. 1984 Jan 12;307(5947):127–130. doi: 10.1038/307127a0. [DOI] [PubMed] [Google Scholar]
- Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
- Formosa T., Alberts B. M. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell. 1986 Dec 5;47(5):793–806. doi: 10.1016/0092-8674(86)90522-2. [DOI] [PubMed] [Google Scholar]
- Gierl A. The En/Spm transposable element of maize. Curr Top Microbiol Immunol. 1996;204:145–159. doi: 10.1007/978-3-642-79795-8_7. [DOI] [PubMed] [Google Scholar]
- Gloor G. B., Nassif N. A., Johnson-Schlitz D. M., Preston C. R., Engels W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
- Holmes A. M., Haber J. E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 1999 Feb 5;96(3):415–424. doi: 10.1016/s0092-8674(00)80554-1. [DOI] [PubMed] [Google Scholar]
- Hsia A. P., Schnable P. S. DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics. 1996 Feb;142(2):603–618. doi: 10.1093/genetics/142.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidwell M. G. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1655–1659. doi: 10.1073/pnas.80.6.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kishima Y., Yamashita S., Martin C., Mikami T. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Plant Mol Biol. 1999 Jan;39(2):299–308. doi: 10.1023/a:1006129413306. [DOI] [PubMed] [Google Scholar]
- Kunze R. The maize transposable element activator (Ac). Curr Top Microbiol Immunol. 1996;204:161–194. doi: 10.1007/978-3-642-79795-8_8. [DOI] [PubMed] [Google Scholar]
- Lankenau D. H., Corces V. G., Engels W. R. Comparison of targeted-gene replacement frequencies in Drosophila melanogaster at the forked and white loci. Mol Cell Biol. 1996 Jul;16(7):3535–3544. doi: 10.1128/mcb.16.7.3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lankenau D. H., Gloor G. B. In vivo gap repair in Drosophila: a one-way street with many destinations. Bioessays. 1998 Apr;20(4):317–327. doi: 10.1002/(SICI)1521-1878(199804)20:4<317::AID-BIES8>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
- Martin C., Carpenter R., Sommer H., Saedler H., Coen E. S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J. 1985 Jul;4(7):1625–1630. doi: 10.1002/j.1460-2075.1985.tb03829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin C., Prescott A., Lister C., MacKay S. Activity of the transposon Tam3 in Antirrhinum and tobacco: possible role of DNA methylation. EMBO J. 1989 Apr;8(4):997–1004. doi: 10.1002/j.1460-2075.1989.tb03466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCLINTOCK B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 1950 Jun;36(6):344–355. doi: 10.1073/pnas.36.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore H., Greenwell P. W., Liu C. P., Arnheim N., Petes T. D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1504–1509. doi: 10.1073/pnas.96.4.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plasterk R. H., Groenen J. T. Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand break repair following Tc1 excision. EMBO J. 1992 Jan;11(1):287–290. doi: 10.1002/j.1460-2075.1992.tb05051.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. doi: 10.1146/annurev.bi.55.070186.002011. [DOI] [PubMed] [Google Scholar]
- Rinehart T. A., Dean C., Weil C. F. Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J. 1997 Dec;12(6):1419–1427. doi: 10.1046/j.1365-313x.1997.12061419.x. [DOI] [PubMed] [Google Scholar]
- Rubin E., Levy A. A. Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol. 1997 Nov;17(11):6294–6302. doi: 10.1128/mcb.17.11.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smit A. F., Riggs A. D. Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1443–1448. doi: 10.1073/pnas.93.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamashita S., Mikami T., Kishima Y. Tam3 in Antirrhinum majus is exceptional transposon in resistant to alteration by abortive gap repair: identification of nested transposons. Mol Gen Genet. 1998 Sep;259(5):468–474. doi: 10.1007/s004380050837. [DOI] [PubMed] [Google Scholar]