Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1731–1741. doi: 10.1093/genetics/153.4.1731

Mapping of hybrid incompatibility loci in Nasonia.

J Gadau 1, R E Page Jr 1, J H Werren 1
PMCID: PMC1460847  PMID: 10581280

Abstract

According to theory, F(2) hybrid breakdown (lethality or sterility) is due to incompatibilities between interacting genes of the different species (i.e., the breaking up of coadapted gene complexes). Detection of such incompatibilities is particularly straightforward in haplodiploid species, because virgin F(1) hybrid females will produce haploid recombinant F(2) males. This feature allows for screening of the complete genome for recessive genetic incompatibilities. Crosses were performed between Nasonia vitripennis (v) and its sibling species N. giraulti (g). First, a linkage map was produced using RAPD markers. RAPD markers showed an overall bias toward vitripennis alleles, a pattern not predicted by the basic two-interactor Dobzhansky-Muller model. Recovery patterns of visible markers were consistent with those of linked RAPD markers. If particular genetic interactions between two loci are causing hybrid lethality, then those genotypes should be underrepresented or absent among adult F(2) males. Four sets of significant incompatibilities were detected by performing pairwise comparisons of markers on different chromosomes. Likely explanations for the observed patterns are maternal effect-zygotic gene incompatibilities or clustering of incompatibility loci. Due to the short generation time, advantages of haplodiploidy, and availability of markers, Nasonia promises to be a productive system for investigating the genetics of hybrid inviability.

Full Text

The Full Text of this article is available as a PDF (137.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antolin M. F., Bosio C. F., Cotton J., Sweeney W., Strand M. R., Black W. C., 4th Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand conformation polymorphism analysis of random amplified polymorphic DNA markers. Genetics. 1996 Aug;143(4):1727–1738. doi: 10.1093/genetics/143.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beeman R. W., Friesen K. S., Denell R. E. Maternal-effect selfish genes in flour beetles. Science. 1992 Apr 3;256(5053):89–92. doi: 10.1126/science.1566060. [DOI] [PubMed] [Google Scholar]
  3. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  4. Cabot E. L., Davis A. W., Johnson N. A., Wu C. I. Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid male sterility. Genetics. 1994 May;137(1):175–189. doi: 10.1093/genetics/137.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell B. C., Steffen-Campbell J. D., Werren J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol Biol. 1993;2(4):225–237. doi: 10.1111/j.1365-2583.1994.tb00142.x. [DOI] [PubMed] [Google Scholar]
  6. Carvajal A. R., Gandarela M. R., Naveira H. F. A three-locus system of interspecific incompatibility underlies male inviability in hybrids between Drosophila buzzatii and D. koepferae. Genetica. 1996 Jul;98(1):1–19. doi: 10.1007/BF00120214. [DOI] [PubMed] [Google Scholar]
  7. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  8. Dobzhansky T. Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. Genetics. 1936 Mar;21(2):113–135. doi: 10.1093/genetics/21.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hollocher H., Wu C. I. The genetics of reproductive isolation in the Drosophila simulans clade: X vs. autosomal effects and male vs. female effects. Genetics. 1996 Jul;143(3):1243–1255. doi: 10.1093/genetics/143.3.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hunt G. J., Page R. E., Jr Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hutter P. Genetics of hybrid inviability in Drosophila. Adv Genet. 1997;36:157–185. doi: 10.1016/s0065-2660(08)60309-0. [DOI] [PubMed] [Google Scholar]
  12. Jordan R. A., Brosemer R. W. Characterization of DNA from three bee species. J Insect Physiol. 1974 Dec;20(12):2513–2520. doi: 10.1016/0022-1910(74)90035-3. [DOI] [PubMed] [Google Scholar]
  13. Laurent V., Wajnberg E., Mangin B., Schiex T., Gaspin C., Vanlerberghe-Masutti F. A composite genetic map of the parasitoid wasp Trichogramma brassicae based on RAPD markers. Genetics. 1998 Sep;150(1):275–282. doi: 10.1093/genetics/150.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orr H. A. Haldane's rule has multiple genetic causes. Nature. 1993 Feb 11;361(6412):532–533. doi: 10.1038/361532a0. [DOI] [PubMed] [Google Scholar]
  15. Orr H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995 Apr;139(4):1805–1813. doi: 10.1093/genetics/139.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palopoli M. F., Wu C. I. Genetics of hybrid male sterility between drosophila sibling species: a complex web of epistasis is revealed in interspecific studies. Genetics. 1994 Oct;138(2):329–341. doi: 10.1093/genetics/138.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ryan S. L., Saul G. B., 2nd, Conner G. W. Aberrant segregation of R-locus genes in male progeny from incompatible crosses in Mormoniella. J Hered. 1985 Jan-Feb;76(1):21–26. doi: 10.1093/oxfordjournals.jhered.a110011. [DOI] [PubMed] [Google Scholar]
  18. Saul G B, Kayhart M. Mutants and Linkage in Mormoniella. Genetics. 1956 Nov;41(6):930–937. doi: 10.1093/genetics/41.6.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sawamura K. Maternal effect as a cause of exceptions for Haldane's rule. Genetics. 1996 May;143(1):609–611. doi: 10.1093/genetics/143.1.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wu C. I., Palopoli M. F. Genetics of postmating reproductive isolation in animals. Annu Rev Genet. 1994;28:283–308. doi: 10.1146/annurev.ge.28.120194.001435. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES