Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1743–1751. doi: 10.1093/genetics/153.4.1743

Insights into genome differentiation: pheromone-binding protein variation and population history in the European corn borer (Ostrinia nubilalis).

C S Willett 1, R G Harrison 1
PMCID: PMC1460852  PMID: 10581281

Abstract

Examination of sequence variation at nuclear loci can give insights into population history and gene flow that cannot be derived from other commonly used molecular markers, such as allozymes. Here, we report on sequence variation at a single nuclear locus, the pheromone-binding protein (PBP) locus, in the European corn borer (Ostrinia nubilalis). The European corn borer has been divided into three races in New York State on the basis of differences in pheromone communication and life history. Previous allozyme data have suggested that there is a small but significant amount of genetic differentiation between these races. The PBP does not appear to be involved in the pheromone differences between these races. Examination of variation at the PBP locus in the three races reveals no fixed differences between races despite high levels of polymorphism. There also appears to have been considerable recombination in the history of the pheromone-binding protein alleles. Observation of both recombination between alleles and lack of significant nucleotide or insertion/deletion divergence between races leads us to suggest that these populations are either recently diverged or have continued to exchange genetic material subsequent to divergence in pheromone communication and life history.

Full Text

The Full Text of this article is available as a PDF (222.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  2. Bradley R. D., Hillis D. M. Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol. 1997 May;14(5):592–593. doi: 10.1093/oxfordjournals.molbev.a025797. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hey J., Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  6. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krieger J., Gänssle H., Raming K., Breer H. Odorant binding proteins of Heliothis virescens. Insect Biochem Mol Biol. 1993 Jun;23(4):449–456. doi: 10.1016/0965-1748(93)90052-t. [DOI] [PubMed] [Google Scholar]
  9. Merritt T. J., LaForest S., Prestwich G. D., Quattro J. M., Vogt R. G. Patterns of gene duplication in lepidopteran pheromone binding proteins. J Mol Evol. 1998 Mar;46(3):272–276. doi: 10.1007/pl00006303. [DOI] [PubMed] [Google Scholar]
  10. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  11. Nachman M. W., Churchill G. A. Heterogeneity in rates of recombination across the mouse genome. Genetics. 1996 Feb;142(2):537–548. doi: 10.1093/genetics/142.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pluzhnikov A., Donnelly P. Optimal sequencing strategies for surveying molecular genetic diversity. Genetics. 1996 Nov;144(3):1247–1262. doi: 10.1093/genetics/144.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Prestwich G. D., Du G., LaForest S. How is pheromone specificity encoded in proteins? Chem Senses. 1995 Aug;20(4):461–469. doi: 10.1093/chemse/20.4.461. [DOI] [PubMed] [Google Scholar]
  14. Roelofs W., Glover T., Tang X. H., Sreng I., Robbins P., Eckenrode C., Löfstedt C., Hansson B. S., Bengtsson B. O. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7585–7589. doi: 10.1073/pnas.84.21.7585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  16. Willett C. S., Harrison R. G. Pheromone binding proteins in the European and Asian corn borers: no protein change associated with pheromone differences. Insect Biochem Mol Biol. 1999 Mar;29(3):277–284. doi: 10.1016/s0965-1748(99)00003-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES