Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1929–1948. doi: 10.1093/genetics/153.4.1929

The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley.

F Wei 1, K Gobelman-Werner 1, S M Morroll 1, J Kurth 1, L Mao 1, R Wing 1, D Leister 1, P Schulze-Lefert 1, R P Wise 1
PMCID: PMC1460856  PMID: 10581297

Abstract

Powdery mildew of barley, caused by Erysiphe graminis f. sp. hordei, is a model system for investigating the mechanism of gene-for-gene interaction between large-genome cereals and obligate-fungal pathogens. A large number of loci that confer resistance to this disease are located on the short arm of chromosome 5(1H). The Mla resistance-gene cluster is positioned near the telomeric end of this chromosome arm. AFLP-, RAPD-, and RFLP-derived markers were used to saturate the Mla region in a high-resolution recombinant population segregating for the (Mla6 + Mla14) and (Mla13 + Ml-Ru3) resistance specificities. These tightly linked genetic markers were used to identify and develop a physical contig of YAC and BAC clones spanning the Mla cluster. Three distinct NBS-LRR resistance-gene homologue (RGH) families were revealed via computational analysis of low-pass and BAC-end sequence data derived from Mla-spanning clones. Genetic and physical mapping delimited the Mla-associated, NBS-LRR gene families to a 240-kb interval. Recombination within the RGH families was at least 10-fold less frequent than between markers directly adjacent to the Mla cluster.

Full Text

The Full Text of this article is available as a PDF (577.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson P. A., Lawrence G. J., Morrish B. C., Ayliffe M. A., Finnegan E. J., Ellis J. G. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 1997 Apr;9(4):641–651. doi: 10.1105/tpc.9.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson P. A., Okubara P. A., Arroyo-Garcia R., Meyers B. C., Michelmore R. W. Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa. Mol Gen Genet. 1996 Jun 12;251(3):316–325. doi: 10.1007/BF02172522. [DOI] [PubMed] [Google Scholar]
  4. Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. doi: 10.1126/science.276.5313.726. [DOI] [PubMed] [Google Scholar]
  5. Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
  6. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  7. Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. doi: 10.1016/s0092-8674(00)81912-1. [DOI] [PubMed] [Google Scholar]
  8. Churchill G. A., Giovannoni J. J., Tanksley S. D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):16–20. doi: 10.1073/pnas.90.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collins N., Drake J., Ayliffe M., Sun Q., Ellis J., Hulbert S., Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell. 1999 Jul;11(7):1365–1376. doi: 10.1105/tpc.11.7.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crute I. R., Pink DAC. Genetics and Utilization of Pathogen Resistance in Plants. Plant Cell. 1996 Oct;8(10):1747–1755. doi: 10.1105/tpc.8.10.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeScenzo R. A., Wise R. P. Variation in the ratio of physical to genetic distance in intervals adjacent to the Mla locus on barley chromosome 1H. Mol Gen Genet. 1996 Jun 24;251(4):472–482. doi: 10.1007/BF02172376. [DOI] [PubMed] [Google Scholar]
  12. Dickinson M. J., Jones D. A., Jones J. D. Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact. 1993 May-Jun;6(3):341–347. doi: 10.1094/mpmi-6-341. [DOI] [PubMed] [Google Scholar]
  13. Dixon M. S., Hatzixanthis K., Jones D. A., Harrison K., Jones J. D. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell. 1998 Nov;10(11):1915–1925. doi: 10.1105/tpc.10.11.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K., Jones J. D. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell. 1996 Feb 9;84(3):451–459. doi: 10.1016/s0092-8674(00)81290-8. [DOI] [PubMed] [Google Scholar]
  15. Doll H., Andersen B. Preparation of barley storage protein, hordein, for analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem. 1981 Jul 15;115(1):61–66. doi: 10.1016/0003-2697(81)90523-6. [DOI] [PubMed] [Google Scholar]
  16. Freialdenhoven A., Scherag B., Hollricher K., Collinge D. B., Thordal-Christensen H., Schulze-Lefert P. Nar-1 and Nar-2, Two Loci Required for Mla12-Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell. 1994 Jul;6(7):983–994. doi: 10.1105/tpc.6.7.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grant M. R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R. W., Dangl J. L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science. 1995 Aug 11;269(5225):843–846. doi: 10.1126/science.7638602. [DOI] [PubMed] [Google Scholar]
  18. Gustafson J. P., Butler E., McIntyre C. L. Physical mapping of a low-copy DNA sequence in rye (Secale cereale L.). Proc Natl Acad Sci U S A. 1990 Mar;87(5):1899–1902. doi: 10.1073/pnas.87.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hu G., Richter T. E., Hulbert S. H., Pryor T. Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell. 1996 Aug;8(8):1367–1376. doi: 10.1105/tpc.8.8.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jiang J., Gill B. S. Sequential chromosome banding and in situ hybridization analysis. Genome. 1993 Aug;36(4):792–795. doi: 10.1139/g93-104. [DOI] [PubMed] [Google Scholar]
  21. Jørgensen J. H. Effect of three suppressors on the expression of powdery mildew resistance genes in barley. Genome. 1996 Jun;39(3):492–498. doi: 10.1139/g96-063. [DOI] [PubMed] [Google Scholar]
  22. Kesseli R. V., Paran I., Michelmore R. W. Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics. 1994 Apr;136(4):1435–1446. doi: 10.1093/genetics/136.4.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kleine M., Jung C., Michalek W., Diefenthal T., Dargatz H. Construction of a MluI-YAC library from barley (Hordeum vulgare L.) and analysis of YAC insert terminal regions. Genome. 1997 Dec;40(6):896–902. doi: 10.1139/g97-116. [DOI] [PubMed] [Google Scholar]
  24. Kleine M., Michalek W., Graner A., Herrmann R. G., Jung C. Construction of a barley (Hordeum vulgare L.) YAC library and isolation of a Hor1-specific clone. Mol Gen Genet. 1993 Aug;240(2):265–272. doi: 10.1007/BF00277065. [DOI] [PubMed] [Google Scholar]
  25. Kota R. S., Gill K. S., Gill B. S., Endo T. R. A cytogenetically based physical map of chromosome 1B in common wheat. Genome. 1993 Jun;36(3):548–554. doi: 10.1139/g93-075. [DOI] [PubMed] [Google Scholar]
  26. Lahaye T., Shirasu K., Schulze-Lefert P. Chromosome landing at the barley Rar1 locus. Mol Gen Genet. 1998 Oct;260(1):92–101. doi: 10.1007/s004380050874. [DOI] [PubMed] [Google Scholar]
  27. Lawrence G. J., Finnegan E. J., Ayliffe M. A., Ellis J. G. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell. 1995 Aug;7(8):1195–1206. doi: 10.1105/tpc.7.8.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leister D., Kurth J., Laurie D. A., Yano M., Sasaki T., Devos K., Graner A., Schulze-Lefert P. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):370–375. doi: 10.1073/pnas.95.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Leitch I. J., Heslop-Harrison J. S. Physical mapping of four sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (Hordeum vulgare). Genome. 1993 Jun;36(3):517–523. doi: 10.1139/g93-071. [DOI] [PubMed] [Google Scholar]
  30. Mahadevappa M., Descenzo R. A., Wise R. P. Recombination of alleles conferring specific resistance to powdery mildew at the Mla locus in barley. Genome. 1994 Jun;37(3):460–468. doi: 10.1139/g94-064. [DOI] [PubMed] [Google Scholar]
  31. Manly K. F. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome. 1993;4(6):303–313. doi: 10.1007/BF00357089. [DOI] [PubMed] [Google Scholar]
  32. Meyers B. C., Shen K. A., Rohani P., Gaut B. S., Michelmore R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell. 1998 Nov;10(11):1833–1846. doi: 10.1105/tpc.10.11.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paran I., Kesseli R., Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome. 1991 Dec;34(6):1021–1027. doi: 10.1139/g91-157. [DOI] [PubMed] [Google Scholar]
  35. Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
  36. Richter T. E., Pryor T. J., Bennetzen J. L., Hulbert S. H. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics. 1995 Sep;141(1):373–381. doi: 10.1093/genetics/141.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Salmeron J. M., Oldroyd G. E., Rommens C. M., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D., Staskawicz B. J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell. 1996 Jul 12;86(1):123–133. doi: 10.1016/s0092-8674(00)80083-5. [DOI] [PubMed] [Google Scholar]
  38. Schnable P. S., Hsia A. P., Nikolau B. J. Genetic recombination in plants. Curr Opin Plant Biol. 1998 Apr;1(2):123–129. doi: 10.1016/s1369-5266(98)80013-7. [DOI] [PubMed] [Google Scholar]
  39. Shen K. A., Meyers B. C., Islam-Faridi M. N., Chin D. B., Stelly D. M., Michelmore R. W. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact. 1998 Aug;11(8):815–823. doi: 10.1094/MPMI.1998.11.8.815. [DOI] [PubMed] [Google Scholar]
  40. Shepherd K. W., Mayo G. M. Genes conferring specific plant disease resistance. Science. 1972 Jan 28;175(4020):375–380. doi: 10.1126/science.175.4020.375. [DOI] [PubMed] [Google Scholar]
  41. Song W. Y., Pi L. Y., Wang G. L., Gardner J., Holsten T., Ronald P. C. Evolution of the rice Xa21 disease resistance gene family. Plant Cell. 1997 Aug;9(8):1279–1287. doi: 10.1105/tpc.9.8.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995 Dec 15;270(5243):1804–1806. doi: 10.1126/science.270.5243.1804. [DOI] [PubMed] [Google Scholar]
  43. Sorokin A., Marthe F., Houben A., Pich U., Graner A., Künzel G. Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome. 1994 Aug;37(4):550–555. doi: 10.1139/g94-078. [DOI] [PubMed] [Google Scholar]
  44. Sudupak M. A., Bennetzen J. L., Hulbert S. H. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize. Genetics. 1993 Jan;133(1):119–125. doi: 10.1093/genetics/133.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Suoniemi A., Anamthawat-Jónsson K., Arna T., Schulman A. H. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol. 1996 Mar;30(6):1321–1329. doi: 10.1007/BF00019563. [DOI] [PubMed] [Google Scholar]
  46. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Waugh R., McLean K., Flavell A. J., Pearce S. R., Kumar A., Thomas B. B., Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet. 1997 Feb 27;253(6):687–694. doi: 10.1007/s004380050372. [DOI] [PubMed] [Google Scholar]
  48. Werner J. E., Endo T. R., Gill B. S. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11307–11311. doi: 10.1073/pnas.89.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wise R. P., Ellingboe A. H. Fine structure and instability of the Ml-a locus in barley. Genetics. 1985 Sep;111(1):113–130. doi: 10.1093/genetics/111.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yoshimura S., Yamanouchi U., Katayose Y., Toki S., Wang Z. X., Kono I., Kurata N., Yano M., Iwata N., Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1663–1668. doi: 10.1073/pnas.95.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES