Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1561–1572. doi: 10.1093/genetics/153.4.1561

The identification of Wos2, a p23 homologue that interacts with Wee1 and Cdc2 in the mitotic control of fission yeasts.

M J Muñoz 1, E R Bejarano 1, R R Daga 1, J Jimenez 1
PMCID: PMC1460861  PMID: 10581266

Abstract

The Wee1 kinase inhibits entry into mitosis by phosphorylation of the Cdc2 kinase. Searching for multicopy suppressors that abolish this inhibition in the fission yeast, we have identified a novel gene, here named wos2, encoding a protein with significant homology to human p23, an Hsp90-associated cochaperone. The deletion mutant has a modest phenotype, being heat-shock sensitive. Using antibodies raised against bacterially produced protein, we determined that Wos2 is very abundant, ubiquitously distributed in the yeast cell, and its expression dropped drastically as cells entered into early stationary phase, indicating that its function is associated with cell proliferation. In proliferating cells, the amount of Wos2 protein was not subjected to cell cycle regulation. However, in vitro assays demonstrated that this Hsp90 cochaperone is potentially regulated by phosphorylation. In addition to suppressing Wee1 activity, overproduction of Wos2 displayed synthetic lethality with Cdc2 mutant proteins, indicating that this Hsp90 cochaperone functionally interacts with Cdc2. The level of Cdc2 protein and its associated H1 kinase activity under synthetic lethal conditions suggested a regulatory role for this Wos2-Cdc2 interaction. Hsp90 complexes are required for CDK regulation; the synergy found between the excess of Wos2 and a deficiency in Hsp90 activity suggests that Wos2 could specifically interfere with the Hsp90-dependent regulation of Cdc2. In vitro analysis indicated that the above genetic interactions could take place by physical association of Wos2 with the single CDK complex of the fission yeast. Expression of the budding yeast p23 protein (encoded by the SBA1 gene) in the fission yeast indicated that Wos2 and Sba1 are functionally exchangeable and therefore that properties described here for Wos2 could be of wide significance in understanding the biological function of cochaperone p23 in eukaryotic cells.

Full Text

The Full Text of this article is available as a PDF (616.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aligue R., Akhavan-Niak H., Russell P. A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J. 1994 Dec 15;13(24):6099–6106. doi: 10.1002/j.1460-2075.1994.tb06956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borkovich K. A., Farrelly F. W., Finkelstein D. B., Taulien J., Lindquist S. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol. 1989 Sep;9(9):3919–3930. doi: 10.1128/mcb.9.9.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bose S., Weikl T., Bügl H., Buchner J. Chaperone function of Hsp90-associated proteins. Science. 1996 Dec 6;274(5293):1715–1717. doi: 10.1126/science.274.5293.1715. [DOI] [PubMed] [Google Scholar]
  4. Broek D., Bartlett R., Crawford K., Nurse P. Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature. 1991 Jan 31;349(6308):388–393. doi: 10.1038/349388a0. [DOI] [PubMed] [Google Scholar]
  5. Chang F., Nurse P. Finishing the cell cycle: control of mitosis and cytokinesis in fission yeast. Trends Genet. 1993 Oct;9(10):333–335. doi: 10.1016/0168-9525(93)90022-a. [DOI] [PubMed] [Google Scholar]
  6. Chang H. C., Nathan D. F., Lindquist S. In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol. 1997 Jan;17(1):318–325. doi: 10.1128/mcb.17.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Connolly T., Beach D. Interaction between the Cig1 and Cig2 B-type cyclins in the fission yeast cell cycle. Mol Cell Biol. 1994 Jan;14(1):768–776. doi: 10.1128/mcb.14.1.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Csermely P., Miyata Y., Schnaider T., Yahara I. Autophosphorylation of grp94 (endoplasmin). J Biol Chem. 1995 Mar 17;270(11):6381–6388. doi: 10.1074/jbc.270.11.6381. [DOI] [PubMed] [Google Scholar]
  10. Duina A. A., Chang H. C., Marsh J. A., Lindquist S., Gaber R. F. A cyclophilin function in Hsp90-dependent signal transduction. Science. 1996 Dec 6;274(5293):1713–1715. doi: 10.1126/science.274.5293.1713. [DOI] [PubMed] [Google Scholar]
  11. Fang Y., Fliss A. E., Rao J., Caplan A. J. SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol Cell Biol. 1998 Jul;18(7):3727–3734. doi: 10.1128/mcb.18.7.3727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fankhauser C., Simanis V. Cold fission: splitting the pombe cell at room temperature. Trends Cell Biol. 1994 Mar;4(3):96–101. doi: 10.1016/0962-8924(94)90182-1. [DOI] [PubMed] [Google Scholar]
  13. Freeman B. C., Toft D. O., Morimoto R. I. Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science. 1996 Dec 6;274(5293):1718–1720. doi: 10.1126/science.274.5293.1718. [DOI] [PubMed] [Google Scholar]
  14. Gautier J., Solomon M. J., Booher R. N., Bazan J. F., Kirschner M. W. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell. 1991 Oct 4;67(1):197–211. doi: 10.1016/0092-8674(91)90583-k. [DOI] [PubMed] [Google Scholar]
  15. Gerber M. R., Farrell A., Deshaies R. J., Herskowitz I., Morgan D. O. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4651–4655. doi: 10.1073/pnas.92.10.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gould K. L., Feoktistova A., Fleig U. A phosphorylation site mutant of Schizosaccharomyces pombe cdc2p fails to promote the metaphase to anaphase transition. Mol Gen Genet. 1998 Sep;259(4):437–448. doi: 10.1007/s004380050834. [DOI] [PubMed] [Google Scholar]
  17. Gould K. L., Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature. 1989 Nov 2;342(6245):39–45. doi: 10.1038/342039a0. [DOI] [PubMed] [Google Scholar]
  18. Hu J., Toft D. O., Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J. 1997 Jan 2;16(1):59–68. doi: 10.1093/emboj/16.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacquier A., Legrain P., Dujon B. Sequence of a 10.7 kb segment of yeast chromosome XI identifies the APN1 and the BAF1 loci and reveals one tRNA gene and several new open reading frames including homologs to RAD2 and kinases. Yeast. 1992 Feb;8(2):121–132. doi: 10.1002/yea.320080207. [DOI] [PubMed] [Google Scholar]
  20. Jimenez J., Alphey L., Nurse P., Glover D. M. Complementation of fission yeast cdc2ts and cdc25ts mutants identifies two cell cycle genes from Drosophila: a cdc2 homologue and string. EMBO J. 1990 Nov;9(11):3565–3571. doi: 10.1002/j.1460-2075.1990.tb07567.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson J. L., Beito T. G., Krco C. J., Toft D. O. Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol. 1994 Mar;14(3):1956–1963. doi: 10.1128/mcb.14.3.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johnson J. L., Toft D. O. A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem. 1994 Oct 7;269(40):24989–24993. [PubMed] [Google Scholar]
  23. Kimura Y., Rutherford S. L., Miyata Y., Yahara I., Freeman B. C., Yue L., Morimoto R. I., Lindquist S. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 1997 Jul 15;11(14):1775–1785. doi: 10.1101/gad.11.14.1775. [DOI] [PubMed] [Google Scholar]
  24. Labib K., Craven R. A., Crawford K., Nurse P. Dominant mutants identify new roles for p34cdc2 in mitosis. EMBO J. 1995 May 15;14(10):2155–2165. doi: 10.1002/j.1460-2075.1995.tb07209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MacNeill S. A., Creanor J., Nurse P. Isolation, characterisation and molecular cloning of new mutant alleles of the fission yeast p34cdc2+ protein kinase gene: identification of temperature-sensitive G2-arresting alleles. Mol Gen Genet. 1991 Sep;229(1):109–118. doi: 10.1007/BF00264219. [DOI] [PubMed] [Google Scholar]
  26. Martin-Castellanos C., Labib K., Moreno S. B-type cyclins regulate G1 progression in fission yeast in opposition to the p25rum1 cdk inhibitor. EMBO J. 1996 Feb 15;15(4):839–849. [PMC free article] [PubMed] [Google Scholar]
  27. Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene. 1993 Jan 15;123(1):127–130. doi: 10.1016/0378-1119(93)90551-d. [DOI] [PubMed] [Google Scholar]
  28. McGowan C. H., Russell P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 1993 Jan;12(1):75–85. doi: 10.1002/j.1460-2075.1993.tb05633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moreno S., Klar A., Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823. doi: 10.1016/0076-6879(91)94059-l. [DOI] [PubMed] [Google Scholar]
  30. Muñoz M. J., Jimenez J. Genetic interactions between Hsp90 and the Cdc2 mitotic machinery in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1999 Mar;261(2):242–250. doi: 10.1007/s004380050963. [DOI] [PubMed] [Google Scholar]
  31. Nair S. C., Toran E. J., Rimerman R. A., Hjermstad S., Smithgall T. E., Smith D. F. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones. 1996 Dec;1(4):237–250. doi: 10.1379/1466-1268(1996)001<0237:apomci>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nasmyth K., Nurse P. Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1981;182(1):119–124. doi: 10.1007/BF00422777. [DOI] [PubMed] [Google Scholar]
  33. Nurse P., Thuriaux P., Nasmyth K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1976 Jul 23;146(2):167–178. doi: 10.1007/BF00268085. [DOI] [PubMed] [Google Scholar]
  34. Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990 Apr 5;344(6266):503–508. doi: 10.1038/344503a0. [DOI] [PubMed] [Google Scholar]
  35. Park M., Yong Kang C., Krishna P. Brassica napus hsp90 can autophosphorylate and phosphorylate other protein substrates. Mol Cell Biochem. 1998 Aug;185(1-2):33–38. doi: 10.1023/a:1006884306169. [DOI] [PubMed] [Google Scholar]
  36. Pratt W. B. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol. 1997;37:297–326. doi: 10.1146/annurev.pharmtox.37.1.297. [DOI] [PubMed] [Google Scholar]
  37. Prentice H. L. High efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res. 1992 Feb 11;20(3):621–621. doi: 10.1093/nar/20.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Russell P., Nurse P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell. 1987 May 22;49(4):559–567. doi: 10.1016/0092-8674(87)90458-2. [DOI] [PubMed] [Google Scholar]
  39. Russell P., Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell. 1986 Apr 11;45(1):145–153. doi: 10.1016/0092-8674(86)90546-5. [DOI] [PubMed] [Google Scholar]
  40. Russo A. A., Jeffrey P. D., Pavletich N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol. 1996 Aug;3(8):696–700. doi: 10.1038/nsb0896-696. [DOI] [PubMed] [Google Scholar]
  41. Schwob E., Böhm T., Mendenhall M. D., Nasmyth K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. 1994 Oct 21;79(2):233–244. doi: 10.1016/0092-8674(94)90193-7. [DOI] [PubMed] [Google Scholar]
  42. Shiozaki K., Russell P. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature. 1995 Dec 14;378(6558):739–743. doi: 10.1038/378739a0. [DOI] [PubMed] [Google Scholar]
  43. Thode G., García-Ranea J. A., Jimenez J. Search for ancient patterns in protein sequences. J Mol Evol. 1996 Feb;42(2):224–233. doi: 10.1007/BF02198848. [DOI] [PubMed] [Google Scholar]
  44. Weisman R., Creanor J., Fantes P. A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein. EMBO J. 1996 Feb 1;15(3):447–456. [PMC free article] [PubMed] [Google Scholar]
  45. Wright A., Maundrell K., Heyer W. D., Beach D., Nurse P. Vectors for the construction of gene banks and the integration of cloned genes in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Plasmid. 1986 Mar;15(2):156–158. doi: 10.1016/0147-619x(86)90051-x. [DOI] [PubMed] [Google Scholar]
  46. Xu Z., Pal J. K., Thulasiraman V., Hahn H. P., Chen J. J., Matts R. L. The role of the 90-kDa heat-shock protein and its associated cohorts in stabilizing the heme-regulated eIF-2alpha kinase in reticulocyte lysates during heat stress. Eur J Biochem. 1997 Jun 1;246(2):461–470. doi: 10.1111/j.1432-1033.1997.t01-1-00461.x. [DOI] [PubMed] [Google Scholar]
  47. Yaglom J. A., Goldberg A. L., Finley D., Sherman M. Y. The molecular chaperone Ydj1 is required for the p34CDC28-dependent phosphorylation of the cyclin Cln3 that signals its degradation. Mol Cell Biol. 1996 Jul;16(7):3679–3684. doi: 10.1128/mcb.16.7.3679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES