Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1873–1883. doi: 10.1093/genetics/153.4.1873

Long inverted repeats are an at-risk motif for recombination in mammalian cells.

A S Waldman 1, H Tran 1, E C Goldsmith 1, M A Resnick 1
PMCID: PMC1460879  PMID: 10581292

Abstract

Certain DNA sequence motifs and structures can promote genomic instability. We have explored instability induced in mouse cells by long inverted repeats (LIRs). A cassette was constructed containing a herpes simplex virus thymidine kinase (tk) gene into which was inserted an LIR composed of two inverted copies of a 1.1-kb yeast URA3 gene sequence separated by a 200-bp spacer sequence. The tk gene was introduced into the genome of mouse Ltk(-) fibroblasts either by itself or in conjunction with a closely linked tk gene that was disrupted by an 8-bp XhoI linker insertion; rates of intrachromosomal homologous recombination between the markers were determined. Recombination between the two tk alleles was stimulated 5-fold by the LIR, as compared to a long direct repeat (LDR) insert, resulting in nearly 10(-5) events per cell per generation. Of the tk(+) segregants recovered from LIR-containing cell lines, 14% arose from gene conversions that eliminated the LIR, as compared to 3% of the tk(+) segregants from LDR cell lines, corresponding to a >20-fold increase in deletions at the LIR hotspot. Thus, an LIR, which is a common motif in mammalian genomes, is at risk for the stimulation of homologous recombination and possibly other genetic rearrangements.

Full Text

The Full Text of this article is available as a PDF (221.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akgün E., Zahn J., Baumes S., Brown G., Liang F., Romanienko P. J., Lewis S., Jasin M. Palindrome resolution and recombination in the mammalian germ line. Mol Cell Biol. 1997 Sep;17(9):5559–5570. doi: 10.1128/mcb.17.9.5559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertini A. M., Hofer M., Calos M. P., Miller J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 1982 Jun;29(2):319–328. doi: 10.1016/0092-8674(82)90148-9. [DOI] [PubMed] [Google Scholar]
  3. Bonneaud N., Ozier-Kalogeropoulos O., Li G. Y., Labouesse M., Minvielle-Sebastia L., Lacroute F. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast. 1991 Aug-Sep;7(6):609–615. doi: 10.1002/yea.320070609. [DOI] [PubMed] [Google Scholar]
  4. Brenneman M., Gimble F. S., Wilson J. H. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3608–3612. doi: 10.1073/pnas.93.8.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Canceill D., Ehrlich S. D. Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6647–6652. doi: 10.1073/pnas.93.13.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capizzi R. L., Jameson J. W. A table for the estimation of the spontaneous mutation rate of cells in culture. Mutat Res. 1973 Jan;17(1):147–148. doi: 10.1016/0027-5107(73)90265-0. [DOI] [PubMed] [Google Scholar]
  7. Chen X., Mariappan S. V., Catasti P., Ratliff R., Moyzis R. K., Laayoun A., Smith S. S., Bradbury E. M., Gupta G. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5199–5203. doi: 10.1073/pnas.92.11.5199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collick A., Drew J., Penberth J., Bois P., Luckett J., Scaerou F., Jeffreys A., Reik W. Instability of long inverted repeats within mouse transgenes. EMBO J. 1996 Mar 1;15(5):1163–1171. [PMC free article] [PubMed] [Google Scholar]
  9. Collins J. Instability of palindromic DNA in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):409–416. doi: 10.1101/sqb.1981.045.01.055. [DOI] [PubMed] [Google Scholar]
  10. Freudenreich C. H., Kantrow S. M., Zakian V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998 Feb 6;279(5352):853–856. doi: 10.1126/science.279.5352.853. [DOI] [PubMed] [Google Scholar]
  11. Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
  12. Glickman B. W., Ripley L. S. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):512–516. doi: 10.1073/pnas.81.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Godwin A. R., Liskay R. M. The effects of insertions on mammalian intrachromosomal recombination. Genetics. 1994 Feb;136(2):607–617. doi: 10.1093/genetics/136.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordenin D. A., Kunkel T. A., Resnick M. A. Repeat expansion--all in a flap? Nat Genet. 1997 Jun;16(2):116–118. doi: 10.1038/ng0697-116. [DOI] [PubMed] [Google Scholar]
  15. Gordenin D. A., Lobachev K. S., Degtyareva N. P., Malkova A. L., Perkins E., Resnick M. A. Inverted DNA repeats: a source of eukaryotic genomic instability. Mol Cell Biol. 1993 Sep;13(9):5315–5322. doi: 10.1128/mcb.13.9.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gordenin D. A., Malkova A. L., Peterzen A., Kulikov V. N., Pavlov Y. I., Perkins E., Resnick M. A. Transposon Tn5 excision in yeast: influence of DNA polymerases alpha, delta, and epsilon and repair genes. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3785–3789. doi: 10.1073/pnas.89.9.3785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gordenin D. A., Resnick M. A. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res. 1998 May 25;400(1-2):45–58. doi: 10.1016/s0027-5107(98)00047-5. [DOI] [PubMed] [Google Scholar]
  18. Haber J. E. A locus control region regulates yeast recombination. Trends Genet. 1998 Aug;14(8):317–321. doi: 10.1016/s0168-9525(98)01501-7. [DOI] [PubMed] [Google Scholar]
  19. Haber J. E. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays. 1995 Jul;17(7):609–620. doi: 10.1002/bies.950170707. [DOI] [PubMed] [Google Scholar]
  20. Henderson S. T., Petes T. D. Instability of a plasmid-borne inverted repeat in Saccharomyces cerevisiae. Genetics. 1993 May;134(1):57–62. doi: 10.1093/genetics/134.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jurka J. Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol. 1998 Jun;8(3):333–337. doi: 10.1016/s0959-440x(98)80067-5. [DOI] [PubMed] [Google Scholar]
  22. Langin T., Hamza H., Haedens V., Rossignol J. L. Reciprocal exchanges instigated by large heterologies in the b2 gene of ascobolus are not associated with long adjacent hybrid DNA stretches. Genetics. 1988 Jun;119(2):329–336. doi: 10.1093/genetics/119.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Linton M. F., Raabe M., Pierotti V., Young S. G. Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem. 1997 May 30;272(22):14127–14132. doi: 10.1074/jbc.272.22.14127. [DOI] [PubMed] [Google Scholar]
  24. Liskay R. M., Stachelek J. L. Information transfer between duplicated chromosomal sequences in mammalian cells involves contiguous regions of DNA. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1802–1806. doi: 10.1073/pnas.83.6.1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liskay R. M., Stachelek J. L., Letsou A. Homologous recombination between repeated chromosomal sequences in mouse cells. Cold Spring Harb Symp Quant Biol. 1984;49:183–189. doi: 10.1101/sqb.1984.049.01.021. [DOI] [PubMed] [Google Scholar]
  26. Lobachev K. S., Shor B. M., Tran H. T., Taylor W., Keen J. D., Resnick M. A., Gordenin D. A. Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics. 1998 Apr;148(4):1507–1524. doi: 10.1093/genetics/148.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997 Jun 15;25(12):2245–2254. doi: 10.1093/nar/25.12.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moynahan M. E., Jasin M. Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):8988–8993. doi: 10.1073/pnas.94.17.8988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nag D. K., Kurst A. A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics. 1997 Jul;146(3):835–847. doi: 10.1093/genetics/146.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rouet P., Smih F., Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6064–6068. doi: 10.1073/pnas.91.13.6064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ruskin B., Fink G. R. Mutations in POL1 increase the mitotic instability of tandem inverted repeats in Saccharomyces cerevisiae. Genetics. 1993 May;134(1):43–56. doi: 10.1093/genetics/134.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sargent R. G., Brenneman M. A., Wilson J. H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol. 1997 Jan;17(1):267–277. doi: 10.1128/mcb.17.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  35. Sutherland G. R., Richards R. I. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3636–3641. doi: 10.1073/pnas.92.9.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  37. Taghian D. G., Nickoloff J. A. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol. 1997 Nov;17(11):6386–6393. doi: 10.1128/mcb.17.11.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tran H., Degtyareva N., Gordenin D., Resnick M. A. Altered replication and inverted repeats induce mismatch repair-independent recombination between highly diverged DNAs in yeast. Mol Cell Biol. 1997 Feb;17(2):1027–1036. doi: 10.1128/mcb.17.2.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  40. Vincent A., Petes T. D. Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. Genetics. 1989 Aug;122(4):759–772. doi: 10.1093/genetics/122.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wagner M. J., Sharp J. A., Summers W. C. Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1441–1445. doi: 10.1073/pnas.78.3.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Waldman A. S., Liskay R. M. Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5340–5344. doi: 10.1073/pnas.84.15.5340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Waldman A. S., Waldman B. C. Stable transfection of mammalian cells by syringe-mediated mechanical loading of DNA. Anal Biochem. 1998 May 1;258(2):216–222. doi: 10.1006/abio.1998.2605. [DOI] [PubMed] [Google Scholar]
  44. Weaver D. T., DePamphilis M. L. The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo. J Mol Biol. 1984 Dec 25;180(4):961–986. doi: 10.1016/0022-2836(84)90266-3. [DOI] [PubMed] [Google Scholar]
  45. Wells R. D. Molecular basis of genetic instability of triplet repeats. J Biol Chem. 1996 Feb 9;271(6):2875–2878. doi: 10.1074/jbc.271.6.2875. [DOI] [PubMed] [Google Scholar]
  46. Yang D., Waldman A. S. Fine-resolution analysis of products of intrachromosomal homeologous recombination in mammalian cells. Mol Cell Biol. 1997 Jul;17(7):3614–3628. doi: 10.1128/mcb.17.7.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES