Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):421–436. doi: 10.1093/genetics/154.1.421

Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana.

V Quesada 1, M R Ponce 1, J L Micol 1
PMCID: PMC1460883  PMID: 10629000

Abstract

Stress caused by the increased salinity of irrigated fields impairs plant growth and is one of the major constraints that limits crop productivity in many important agricultural areas. As a contribution to solving such agronomic problems, we have carried out a large-scale screening for Arabidopsis thaliana mutants induced on different genetic backgrounds by EMS treatment, fast neutron bombardment, or T-DNA insertions. From the 675,500 seeds we screened, 17 mutant lines were isolated, all but one of which yielded 25-70% germination levels on 250 mm NaCl medium, a condition in which their ancestor ecotypes are unable to germinate. Monogenic recessive inheritance of NaCl-tolerant germination was displayed with incomplete penetrance by all the selected mutants, which fell into five complementation groups. These were named SALOBRENO (SAN) and mapped relative to polymorphic microsatellites, the map positions of three of them suggesting that they are novel genes. Strains carrying mutations in the SAN1-SAN4 genes display similar responses to both ionic effects and osmotic pressure, their germination being NaCl and mannitol tolerant but KCl and Na(2)SO(4) sensitive. In addition, NaCl-, KCl-, and mannitol-tolerant as well as abscisic-acid-insensitive germination was displayed by sañ5, whose genetic and molecular characterization indicates that it carries an extremely hypomorphic or null allele of the ABI4 gene, its deduced protein product lacking the APETALA2 DNA binding domain.

Full Text

The Full Text of this article is available as a PDF (242.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  2. Berná G., Robles P., Micol J. L. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics. 1999 Jun;152(2):729–742. doi: 10.1093/genetics/152.2.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bleecker A. B., Estelle M. A., Somerville C., Kende H. Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana. Science. 1988 Aug 26;241(4869):1086–1089. doi: 10.1126/science.241.4869.1086. [DOI] [PubMed] [Google Scholar]
  4. Bohnert H. J., Sheveleva E. Plant stress adaptations--making metabolism move. Curr Opin Plant Biol. 1998 Jun;1(3):267–274. doi: 10.1016/s1369-5266(98)80115-5. [DOI] [PubMed] [Google Scholar]
  5. Boyer J. S. Plant productivity and environment. Science. 1982 Oct 29;218(4571):443–448. doi: 10.1126/science.218.4571.443. [DOI] [PubMed] [Google Scholar]
  6. Bray E. A. Molecular Responses to Water Deficit. Plant Physiol. 1993 Dec;103(4):1035–1040. doi: 10.1104/pp.103.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
  8. Bruggemann E., Handwerger K., Essex C., Storz G. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J. 1996 Oct;10(4):755–760. doi: 10.1046/j.1365-313x.1996.10040755.x. [DOI] [PubMed] [Google Scholar]
  9. Degenhardt J., Larsen P. B., Howell S. H., Kochian L. V. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol. 1998 May;117(1):19–27. doi: 10.1104/pp.117.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deikman J., Ulrich M. A novel cytokinin-resistant mutant of Arabidopsis with abbreviated shoot development. Planta. 1995;195(3):440–449. doi: 10.1007/BF00202603. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein R. R., Wang M. L., Lynch T. J., Rao S., Goodman H. M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell. 1998 Jun;10(6):1043–1054. doi: 10.1105/tpc.10.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanson A. D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M. O., Gage D. A. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):306–310. doi: 10.1073/pnas.91.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayashi H., Alia, Mustardy L., Deshnium P., Ida M., Murata N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997 Jul;12(1):133–142. doi: 10.1046/j.1365-313x.1997.12010133.x. [DOI] [PubMed] [Google Scholar]
  14. Hirayama T., Ohto C., Mizoguchi T., Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3903–3907. doi: 10.1073/pnas.92.9.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hobbie L., Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995 Feb;7(2):211–220. doi: 10.1046/j.1365-313x.1995.7020211.x. [DOI] [PubMed] [Google Scholar]
  16. Hong S. W., Jon J. H., Kwak J. M., Nam H. G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol. 1997 Apr;113(4):1203–1212. doi: 10.1104/pp.113.4.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hua J., Chang C., Sun Q., Meyerowitz E. M. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995 Sep 22;269(5231):1712–1714. doi: 10.1126/science.7569898. [DOI] [PubMed] [Google Scholar]
  18. Ito T., Takahashi N., Shimura Y., Okada K. A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol. 1997 Mar;38(3):248–258. doi: 10.1093/oxfordjournals.pcp.a029160. [DOI] [PubMed] [Google Scholar]
  19. Larsen P. B., Degenhardt J., Tai C. Y., Stenzler L. M., Howell S. H., Kochian L. V. Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol. 1998 May;117(1):9–18. doi: 10.1104/pp.117.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lin Y., Cheng C. L. A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell. 1997 Jan;9(1):21–35. doi: 10.1105/tpc.9.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maeda T., Takekawa M., Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995 Jul 28;269(5223):554–558. doi: 10.1126/science.7624781. [DOI] [PubMed] [Google Scholar]
  22. Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
  23. Maher E. P., Martindale S. J. Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet. 1980 Dec;18(11-12):1041–1053. doi: 10.1007/BF00484337. [DOI] [PubMed] [Google Scholar]
  24. Mizoguchi T., Hayashida N., Yamaguchi-Shinozaki K., Kamada H., Shinozaki K. Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett. 1995 Jan 23;358(2):199–204. doi: 10.1016/0014-5793(94)01423-x. [DOI] [PubMed] [Google Scholar]
  25. Ponce M. R., Quesada V., Micol J. L. Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J. 1998 May;14(4):497–501. doi: 10.1046/j.1365-313x.1998.00146.x. [DOI] [PubMed] [Google Scholar]
  26. Ponce M. R., Robles P., Micol J. L. High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet. 1999 Mar;261(2):408–415. doi: 10.1007/s004380050982. [DOI] [PubMed] [Google Scholar]
  27. Rentsch D., Hirner B., Schmelzer E., Frommer W. B. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell. 1996 Aug;8(8):1437–1446. doi: 10.1105/tpc.8.8.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roosens N. H., Thu T. T., Iskandar H. M., Jacobs M. Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 1998 May;117(1):263–271. doi: 10.1104/pp.117.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubio F., Gassmann W., Schroeder J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995 Dec 8;270(5242):1660–1663. doi: 10.1126/science.270.5242.1660. [DOI] [PubMed] [Google Scholar]
  30. Sakai H., Hua J., Chen Q. G., Chang C., Medrano L. J., Bleecker A. B., Meyerowitz E. M. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812–5817. doi: 10.1073/pnas.95.10.5812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saleki R., Young P. G., Lefebvre D. D. Mutants of Arabidopsis thaliana Capable of Germination under Saline Conditions. Plant Physiol. 1993 Mar;101(3):839–845. doi: 10.1104/pp.101.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Savouré A., Jaoua S., Hua X. J., Ardiles W., Van Montagu M., Verbruggen N. Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett. 1995 Sep 18;372(1):13–19. doi: 10.1016/0014-5793(95)00935-3. [DOI] [PubMed] [Google Scholar]
  33. Sheveleva E., Chmara W., Bohnert H. J., Jensen R. G. Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L. Plant Physiol. 1997 Nov;115(3):1211–1219. doi: 10.1104/pp.115.3.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Singh N. K., Handa A. K., Hasegawa P. M., Bressan R. A. Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl. Plant Physiol. 1985 Sep;79(1):126–137. doi: 10.1104/pp.79.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strizhov N., Abrahám E., Okrész L., Blickling S., Zilberstein A., Schell J., Koncz C., Szabados L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J. 1997 Sep;12(3):557–569. doi: 10.1046/j.1365-313x.1997.00557.x. [DOI] [PubMed] [Google Scholar]
  36. Su W., Howell S. H. A Single Genetic Locus, Ckr1, Defines Arabidopsis Mutants in which Root Growth Is Resistant to Low Concentrations of Cytokinin. Plant Physiol. 1992 Aug;99(4):1569–1574. doi: 10.1104/pp.99.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Söderman E., Mattsson J., Engström P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 1996 Aug;10(2):375–381. doi: 10.1046/j.1365-313x.1996.10020375.x. [DOI] [PubMed] [Google Scholar]
  38. Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
  39. Urao T., Katagiri T., Mizoguchi T., Yamaguchi-Shinozaki K., Hayashida N., Shinozaki K. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet. 1994 Aug 15;244(4):331–340. doi: 10.1007/BF00286684. [DOI] [PubMed] [Google Scholar]
  40. Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993 Nov;5(11):1529–1539. doi: 10.1105/tpc.5.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Velten J., Schell J. Selection-expression plasmid vectors for use in genetic transformation of higher plants. Nucleic Acids Res. 1985 Oct 11;13(19):6981–6998. doi: 10.1093/nar/13.19.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilkinson J. Q., Crawford N. M. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell. 1991 May;3(5):461–471. doi: 10.1105/tpc.3.5.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]
  44. Xin Z., Browse J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799–7804. doi: 10.1073/pnas.95.13.7799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Xu D., Duan X., Wang B., Hong B., Ho THD., Wu R. Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol. 1996 Jan;110(1):249–257. doi: 10.1104/pp.110.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Xu Q., Fu H. H., Gupta R., Luan S. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell. 1998 May;10(5):849–857. doi: 10.1105/tpc.10.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  48. Zhu J. K., Liu J., Xiong L. Genetic analysis of salt tolerance in arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell. 1998 Jul;10(7):1181–1191. doi: 10.1105/tpc.10.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES