Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):363–380. doi: 10.1093/genetics/154.1.363

Genotypic stability, segregation and selection in heteroplasmic human cell lines containing np 3243 mutant mtDNA.

S K Lehtinen 1, N Hance 1, A El Meziane 1, M K Juhola 1, K M Juhola 1, R Karhu 1, J N Spelbrink 1, I J Holt 1, H T Jacobs 1
PMCID: PMC1460892  PMID: 10628996

Abstract

The mitochondrial genotype of heteroplasmic human cell lines containing the pathological np 3243 mtDNA mutation, plus or minus its suppressor at np 12300, has been followed over long periods in culture. Cell lines containing various different proportions of mutant mtDNA remained generally at a consistent, average heteroplasmy value over at least 30 wk of culture in nonselective media and exhibited minimal mitotic segregation, with a segregation number comparable with mtDNA copy number (>/=1000). Growth in selective medium of cells at 99% np 3243 mutant mtDNA did, however, allow the isolation of clones with lower levels of the mutation, against a background of massive cell death. As a rare event, cell lines exhibited a sudden and dramatic diversification of heteroplasmy levels, accompanied by a shift in the average heteroplasmy level over a short period (<8 wk), indicating selection. One such episode was associated with a gain of chromosome 9. Analysis of respiratory phenotype and mitochondrial genotype of cell clones from such cultures revealed that stable heteroplasmy values were generally reestablished within a few weeks, in a reproducible but clone-specific fashion. This occurred independently of any straightforward phenotypic selection at the individual cell-clone level. Our findings are consistent with several alternate views of mtDNA organization in mammalian cells. One model that is supported by our data is that mtDNA is found in nucleoids containing many copies of the genome, which can themselves be heteroplasmic, and which are faithfully replicated. We interpret diversification and shifts of heteroplasmy level as resulting from a reorganization of such nucleoids, under nuclear genetic control. Abrupt remodeling of nucleoids in vivo would have major implications for understanding the developmental consequences of heteroplasmy, including mitochondrial disease phenotype and progression.

Full Text

The Full Text of this article is available as a PDF (252.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backert S., Dörfel P., Lurz R., Börner T. Rolling-circle replication of mitochondrial DNA in the higher plant Chenopodium album (L.). Mol Cell Biol. 1996 Nov;16(11):6285–6294. doi: 10.1128/mcb.16.11.6285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bentlage H. A., Attardi G. Relationship of genotype to phenotype in fibroblast-derived transmitochondrial cell lines carrying the 3243 mutation associated with the MELAS encephalomyopathy: shift towards mutant genotype and role of mtDNA copy number. Hum Mol Genet. 1996 Feb;5(2):197–205. doi: 10.1093/hmg/5.2.197. [DOI] [PubMed] [Google Scholar]
  3. Berger K. H., Yaffe M. P. Mitochondrial distribution and inheritance. Experientia. 1996 Dec 15;52(12):1111–1116. doi: 10.1007/BF01952109. [DOI] [PubMed] [Google Scholar]
  4. Chomyn A., Martinuzzi A., Yoneda M., Daga A., Hurko O., Johns D., Lai S. T., Nonaka I., Angelini C., Attardi G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4221–4225. doi: 10.1073/pnas.89.10.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clayton D. A. Replication of animal mitochondrial DNA. Cell. 1982 Apr;28(4):693–705. doi: 10.1016/0092-8674(82)90049-6. [DOI] [PubMed] [Google Scholar]
  6. Dunbar D. R., Moonie P. A., Zeviani M., Holt I. J. Complex I deficiency is associated with 3243G:C mitochondrial DNA in osteosarcoma cell cybrids. Hum Mol Genet. 1996 Jan;5(1):123–129. doi: 10.1093/hmg/5.1.123. [DOI] [PubMed] [Google Scholar]
  7. El Meziane A., Lehtinen S. K., Hance N., Nijtmans L. G., Dunbar D., Holt I. J., Jacobs H. T. A tRNA suppressor mutation in human mitochondria. Nat Genet. 1998 Apr;18(4):350–353. doi: 10.1038/ng0498-350. [DOI] [PubMed] [Google Scholar]
  8. El Meziane A., Lehtinen S. K., Holt I. J., Jacobs H. T. Mitochondrial tRNALeu isoforms in lung carcinoma cybrid cells containing the np 3243 mtDNA mutation. Hum Mol Genet. 1998 Dec;7(13):2141–2147. doi: 10.1093/hmg/7.13.2141. [DOI] [PubMed] [Google Scholar]
  9. Glaser P., Sharpe M. E., Raether B., Perego M., Ohlsen K., Errington J. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 1997 May 1;11(9):1160–1168. doi: 10.1101/gad.11.9.1160. [DOI] [PubMed] [Google Scholar]
  10. Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990 Dec 13;348(6302):651–653. doi: 10.1038/348651a0. [DOI] [PubMed] [Google Scholar]
  11. Hayashi J., Takemitsu M., Goto Y., Nonaka I. Human mitochondria and mitochondrial genome function as a single dynamic cellular unit. J Cell Biol. 1994 Apr;125(1):43–50. doi: 10.1083/jcb.125.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jean-Francois M. J., Lertrit P., Berkovic S. F., Crimmins D., Morris J., Marzuki S., Byrne E. Heterogeneity in the phenotypic expression of the mutation in the mitochondrial tRNA(Leu) (UUR) gene generally associated with the MELAS subset of mitochondrial encephalomyopathies. Aust N Z J Med. 1994 Apr;24(2):188–193. doi: 10.1111/j.1445-5994.1994.tb00556.x. [DOI] [PubMed] [Google Scholar]
  13. Jenuth J. P., Peterson A. C., Fu K., Shoubridge E. A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet. 1996 Oct;14(2):146–151. doi: 10.1038/ng1096-146. [DOI] [PubMed] [Google Scholar]
  14. Jenuth J. P., Peterson A. C., Shoubridge E. A. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet. 1997 May;16(1):93–95. doi: 10.1038/ng0597-93. [DOI] [PubMed] [Google Scholar]
  15. Kallioniemi O. P., Kallioniemi A., Piper J., Isola J., Waldman F. M., Gray J. W., Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994 Aug;10(4):231–243. doi: 10.1002/gcc.2870100403. [DOI] [PubMed] [Google Scholar]
  16. Karhu R., Kähkönen M., Kuukasjärvi T., Pennanen S., Tirkkonen M., Kallioniemi O. Quality control of CGH: impact of metaphase chromosomes and the dynamic range of hybridization. Cytometry. 1997 Jul 1;28(3):198–205. doi: 10.1002/(sici)1097-0320(19970701)28:3<198::aid-cyto3>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  17. King M. P., Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989 Oct 27;246(4929):500–503. doi: 10.1126/science.2814477. [DOI] [PubMed] [Google Scholar]
  18. King M. P., Koga Y., Davidson M., Schon E. A. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol. 1992 Feb;12(2):480–490. doi: 10.1128/mcb.12.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kobayashi Y., Momoi M. Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., Kagawa Y., Ohta S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun. 1990 Dec 31;173(3):816–822. doi: 10.1016/s0006-291x(05)80860-5. [DOI] [PubMed] [Google Scholar]
  20. Kuroiwa T., Kuroiwa H., Sakai A., Takahashi H., Toda K., Itoh R. The division apparatus of plastids and mitochondria. Int Rev Cytol. 1998;181:1–41. doi: 10.1016/s0074-7696(08)60415-5. [DOI] [PubMed] [Google Scholar]
  21. Kuroiwa T., Ohta T., Kuroiwa H., Shigeyuki K. Molecular and cellular mechanisms of mitochondrial nuclear division and mitochondriokinesis. Microsc Res Tech. 1994 Feb 15;27(3):220–232. doi: 10.1002/jemt.1070270304. [DOI] [PubMed] [Google Scholar]
  22. Lewis P. J., Errington J. Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein. Mol Microbiol. 1997 Sep;25(5):945–954. doi: 10.1111/j.1365-2958.1997.mmi530.x. [DOI] [PubMed] [Google Scholar]
  23. Maleszka R., Skelly P. J., Clark-Walker G. D. Rolling circle replication of DNA in yeast mitochondria. EMBO J. 1991 Dec;10(12):3923–3929. doi: 10.1002/j.1460-2075.1991.tb04962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marchington D. R., Hartshorne G. M., Barlow D., Poulton J. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck. Am J Hum Genet. 1997 Feb;60(2):408–416. [PMC free article] [PubMed] [Google Scholar]
  25. Mariotti C., Savarese N., Suomalainen A., Rimoldi M., Comi G., Prelle A., Antozzi C., Servidei S., Jarre L., DiDonato S. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J Neurol. 1995 May;242(5):304–312. doi: 10.1007/BF00878873. [DOI] [PubMed] [Google Scholar]
  26. Matthews P. M., Brown R. M., Morten K., Marchington D., Poulton J., Brown G. Intracellular heteroplasmy for disease-associated point mutations in mtDNA: implications for disease expression and evidence for mitotic segregation of heteroplasmic units of mtDNA. Hum Genet. 1995 Sep;96(3):261–268. doi: 10.1007/BF00210404. [DOI] [PubMed] [Google Scholar]
  27. Miquel J. An update on the mitochondrial-DNA mutation hypothesis of cell aging. Mutat Res. 1992 Sep;275(3-6):209–216. doi: 10.1016/0921-8734(92)90024-j. [DOI] [PubMed] [Google Scholar]
  28. Miyakawa I., Fumoto S., Kuroiwa T., Sando N. Characterization of DNA-binding proteins involved in the assembly of mitochondrial nucleoids in the yeast Saccharomyces cerevisiae. Plant Cell Physiol. 1995 Oct;36(7):1179–1188. [PubMed] [Google Scholar]
  29. Newman S. M., Zelenaya-Troitskaya O., Perlman P. S., Butow R. A. Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p. Nucleic Acids Res. 1996 Jan 15;24(2):386–393. doi: 10.1093/nar/24.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nishida E., Iida K., Yonezawa N., Koyasu S., Yahara I., Sakai H. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5262–5266. doi: 10.1073/pnas.84.15.5262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nunnari J., Marshall W. F., Straight A., Murray A., Sedat J. W., Walter P. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell. 1997 Jul;8(7):1233–1242. doi: 10.1091/mbc.8.7.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reid F. M., Rovio A., Holt I. J., Jacobs H. T. Molecular phenotype of a human lymphoblastoid cell-line homoplasmic for the np 7445 deafness-associated mitochondrial mutation. Hum Mol Genet. 1997 Mar;6(3):443–449. doi: 10.1093/hmg/6.3.443. [DOI] [PubMed] [Google Scholar]
  33. Reid F. M., Vernham G. A., Jacobs H. T. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat. 1994;3(3):243–247. doi: 10.1002/humu.1380030311. [DOI] [PubMed] [Google Scholar]
  34. Shoubridge E. A. Segregation of mitochondrial DNAs carrying a pathogenic point mutation (tRNA(leu3243)) in cybrid cells. Biochem Biophys Res Commun. 1995 Aug 4;213(1):189–195. doi: 10.1006/bbrc.1995.2115. [DOI] [PubMed] [Google Scholar]
  35. Spelbrink J. N., Zwart R., Van Galen M. J., Van den Bogert C. Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells. Curr Genet. 1997 Aug;32(2):115–124. doi: 10.1007/s002940050255. [DOI] [PubMed] [Google Scholar]
  36. Takai D., Inoue K., Goto Y. i., Nonaka I., Hayashi J. I. The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem. 1997 Feb 28;272(9):6028–6033. doi: 10.1074/jbc.272.9.6028. [DOI] [PubMed] [Google Scholar]
  37. Treat L. G., Birky C. W., Jr Early vegetative segregation of mitochondrial genes in Saccharomyces cerevisiae. Plasmid. 1980 Nov;4(3):261–275. doi: 10.1016/0147-619x(80)90065-7. [DOI] [PubMed] [Google Scholar]
  38. Wheeler R. T., Shapiro L. Bacterial chromosome segregation: is there a mitotic apparatus? Cell. 1997 Mar 7;88(5):577–579. doi: 10.1016/s0092-8674(00)81898-x. [DOI] [PubMed] [Google Scholar]
  39. Whitfield C. D., Bostedor R., Goodrum D., Haak M., Chu E. H. Hamster cell mutants unable to grow on galactose and exhibiting an overlapping complementation pattern are defective in the electron transport chain. J Biol Chem. 1981 Jul 10;256(13):6651–6656. [PubMed] [Google Scholar]
  40. Yoneda M., Miyatake T., Attardi G. Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol. 1994 Apr;14(4):2699–2712. doi: 10.1128/mcb.14.4.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van den Ouweland J. M., Lemkes H. H., Ruitenbeek W., Sandkuijl L. A., de Vijlder M. F., Struyvenberg P. A., van de Kamp J. J., Maassen J. A. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992 Aug;1(5):368–371. doi: 10.1038/ng0892-368. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES