Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):205–212. doi: 10.1093/genetics/154.1.205

Linkage analysis of sex determination in Bracon sp. near hebetor (Hymenoptera: Braconidae).

A K Holloway 1, M R Strand 1, W C Black 4th 1, M F Antolin 1
PMCID: PMC1460894  PMID: 10628981

Abstract

To test whether sex determination in the parasitic wasp Bracon sp. near hebetor (Hymenoptera: Braconidae) is based upon a single locus or multiple loci, a linkage map was constructed using random amplified polymorphic DNA (RAPD) markers. The map includes 71 RAPD markers and one phenotypic marker, blonde. Sex was scored in a manner consistent with segregation of a single "sex locus" under complementary sex determination (CSD), which is common in haplodiploid Hymenoptera. Under haplodiploidy, males arise from unfertilized haploid eggs and females develop from fertilized diploid eggs. With CSD, females are heterozygous at the sex locus; diploids that are homozygous at the sex locus become diploid males, which are usually inviable or sterile. Ten linkage groups were formed at a minimum LOD of 3.0, with one small linkage group that included the sex locus. To locate other putative quantitative trait loci (QTL) for sex determination, sex was also treated as a binary threshold character. Several QTL were found after conducting permutation tests on the data, including one on linkage group I that corresponds to the major sex locus. One other QTL of smaller effect had a segregation pattern opposite to that expected under CSD, while another putative QTL showed a female-specific pattern consistent with either a sex-differentiating gene or a sex-specific deleterious mutation. Comparisons are made between this study and the in-depth studies on sex determination and sex differentiation in the closely related B. hebetor.

Full Text

The Full Text of this article is available as a PDF (118.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antolin M. F., Bosio C. F., Cotton J., Sweeney W., Strand M. R., Black W. C., 4th Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand conformation polymorphism analysis of random amplified polymorphic DNA markers. Genetics. 1996 Aug;143(4):1727–1738. doi: 10.1093/genetics/143.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beukeboom L. W. Sex determination in Hymenoptera: a need for genetic and molecular studies. Bioessays. 1995 Sep;17(9):813–817. doi: 10.1002/bies.950170911. [DOI] [PubMed] [Google Scholar]
  3. Beye M., Moritz R. F., Epplen C. Sex linkage in the honeybee Apis mellifera detected by multilocus DNA fingerprinting. Naturwissenschaften. 1994 Oct;81(10):460–462. doi: 10.1007/BF01136650. [DOI] [PubMed] [Google Scholar]
  4. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coen E., Strachan T., Dover G. Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol. 1982 Jun 15;158(1):17–35. doi: 10.1016/0022-2836(82)90448-x. [DOI] [PubMed] [Google Scholar]
  6. Dobson S. L., Tanouye M. A. Evidence for a genomic imprinting sex determination mechanism in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Genetics. 1998 May;149(1):233–242. doi: 10.1093/genetics/149.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heimpel GE, Antolin MF, Strand MR. Diversity of sex-determining alleles in bracon hebetor . Heredity (Edinb) 1999 Apr;82(Pt 3):282–291. doi: 10.1038/sj.hdy.6884810. [DOI] [PubMed] [Google Scholar]
  8. Hiss R. H., Norris D. E., Dietrich C. H., Whitcomb R. F., West D. F., Bosio C. F., Kambhampati S., Piesman J., Antolin M. F., Black W. C., 4th Molecular taxonomy using single-strand conformation polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes. Insect Mol Biol. 1994 Aug;3(3):171–182. doi: 10.1111/j.1365-2583.1994.tb00164.x. [DOI] [PubMed] [Google Scholar]
  9. Hunt G. J., Page R. E., Jr Linkage analysis of sex determination in the honey bee (Apis mellifera). Mol Gen Genet. 1994 Sep 1;244(5):512–518. doi: 10.1007/BF00583902. [DOI] [PubMed] [Google Scholar]
  10. Hunt G. J., Page R. E., Jr Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  12. Marín I., Baker B. S. The evolutionary dynamics of sex determination. Science. 1998 Sep 25;281(5385):1990–1994. doi: 10.1126/science.281.5385.1990. [DOI] [PubMed] [Google Scholar]
  13. Müller-Holtkamp F. The Sex-lethal gene homologue in Chrysomya rufifacies is highly conserved in sequence and exon-intron organization. J Mol Evol. 1995 Oct;41(4):467–477. doi: 10.1007/BF00160318. [DOI] [PubMed] [Google Scholar]
  14. Schaffer H. E., Sederoff R. R. Improved estimation of DNA fragment lengths from Agarose gels. Anal Biochem. 1981 Jul 15;115(1):113–122. doi: 10.1016/0003-2697(81)90533-9. [DOI] [PubMed] [Google Scholar]
  15. Sievert V., Kuhn S., Traut W. Expression of the sex determining cascade genes Sex-lethal and doublesex in the phorid fly Megaselia scalaris. Genome. 1997 Apr;40(2):211–214. doi: 10.1139/g97-030. [DOI] [PubMed] [Google Scholar]
  16. WHITING A. R. Genetics of Habrobracon. Adv Genet. 1961;10:295–348. doi: 10.1016/s0065-2660(08)60120-0. [DOI] [PubMed] [Google Scholar]
  17. Whiting P W. Multiple Alleles in Complementary Sex Determination of Habrobracon. Genetics. 1943 Sep;28(5):365–382. doi: 10.1093/genetics/28.5.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xu S., Atchley W. R. Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics. 1996 Jul;143(3):1417–1424. doi: 10.1093/genetics/143.3.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Xu S., Yonash N., Vallejo R. L., Cheng H. H. Mapping quantitative trait loci for binary traits using a heterogeneous residual variance model: an application to Marek's disease susceptibility in chickens. Genetica. 1998;104(2):171–178. doi: 10.1023/a:1003522902078. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES