Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):459–473. doi: 10.1093/genetics/154.1.459

The probability of duplicate gene preservation by subfunctionalization.

M Lynch 1, A Force 1
PMCID: PMC1460895  PMID: 10629003

Abstract

It has often been argued that gene-duplication events are most commonly followed by a mutational event that silences one member of the pair, while on rare occasions both members of the pair are preserved as one acquires a mutation with a beneficial function and the other retains the original function. However, empirical evidence from genome duplication events suggests that gene duplicates are preserved in genomes far more commonly and for periods far in excess of the expectations under this model, and whereas some gene duplicates clearly evolve new functions, there is little evidence that this is the most common mechanism of duplicate-gene preservation. An alternative hypothesis is that gene duplicates are frequently preserved by subfunctionalization, whereby both members of a pair experience degenerative mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We consider the ways in which the probability of duplicate-gene preservation by such complementary mutations is modified by aspects of gene structure, degree of linkage, mutation rates and effects, and population size. Even if most mutations cause complete loss-of-subfunction, the probability of duplicate-gene preservation can be appreciable if the long-term effective population size is on the order of 10(5) or smaller, especially if there are more than two independently mutable subfunctions per locus. Even a moderate incidence of partial loss-of-function mutations greatly elevates the probability of preservation. The model proposed herein leads to quantitative predictions that are consistent with observations on the frequency of long-term duplicate gene preservation and with observations that indicate that a common fate of the members of duplicate-gene pairs is the partitioning of tissue-specific patterns of expression of the ancestral gene.

Full Text

The Full Text of this article is available as a PDF (191.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amores A., Force A., Yan Y. L., Joly L., Amemiya C., Fritz A., Ho R. K., Langeland J., Prince V., Wang Y. L. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998 Nov 27;282(5394):1711–1714. doi: 10.1126/science.282.5394.1711. [DOI] [PubMed] [Google Scholar]
  2. Arnone M. I., Davidson E. H. The hardwiring of development: organization and function of genomic regulatory systems. Development. 1997 May;124(10):1851–1864. doi: 10.1242/dev.124.10.1851. [DOI] [PubMed] [Google Scholar]
  3. Bailey G. S., Poulter R. T., Stockwell P. A. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5575–5579. doi: 10.1073/pnas.75.11.5575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birky C. W., Jr, Walsh J. B. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. doi: 10.1073/pnas.85.17.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brookfield J. F. Genetic redundancy. Adv Genet. 1997;36:137–155. doi: 10.1016/s0065-2660(08)60308-9. [DOI] [PubMed] [Google Scholar]
  6. Clark A. G., Wang L., Hulleberg T. Spontaneous mutation rate of modifiers of metabolism in Drosophila. Genetics. 1995 Feb;139(2):767–779. doi: 10.1093/genetics/139.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DiLeone R. J., Russell L. B., Kingsley D. M. An extensive 3' regulatory region controls expression of Bmp5 in specific anatomical structures of the mouse embryo. Genetics. 1998 Jan;148(1):401–408. doi: 10.1093/genetics/148.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
  9. Graf J. D., Kobel H. R. Genetics of Xenopus laevis. Methods Cell Biol. 1991;36:19–34. doi: 10.1016/s0091-679x(08)60270-8. [DOI] [PubMed] [Google Scholar]
  10. Henikoff S., Greene E. A., Pietrokovski S., Bork P., Attwood T. K., Hood L. Gene families: the taxonomy of protein paralogs and chimeras. Science. 1997 Oct 24;278(5338):609–614. doi: 10.1126/science.278.5338.609. [DOI] [PubMed] [Google Scholar]
  11. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  12. Huang J. D., Schwyter D. H., Shirokawa J. M., Courey A. J. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 1993 Apr;7(4):694–704. doi: 10.1101/gad.7.4.694. [DOI] [PubMed] [Google Scholar]
  13. Hughes M. K., Hughes A. L. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol. 1993 Nov;10(6):1360–1369. doi: 10.1093/oxfordjournals.molbev.a040080. [DOI] [PubMed] [Google Scholar]
  14. Jack J., DeLotto Y. Structure and regulation of a complex locus: the cut gene of Drosophila. Genetics. 1995 Apr;139(4):1689–1700. doi: 10.1093/genetics/139.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kammandel B., Chowdhury K., Stoykova A., Aparicio S., Brenner S., Gruss P. Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol. 1999 Jan 1;205(1):79–97. doi: 10.1006/dbio.1998.9128. [DOI] [PubMed] [Google Scholar]
  16. Kimura M., King J. L. Fixation of a deleterious allele at one of two "duplicate" loci by mutation pressure and random drift. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2858–2861. doi: 10.1073/pnas.76.6.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kirchhamer C. V., Yuh C. H., Davidson E. H. Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9322–9328. doi: 10.1073/pnas.93.18.9322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nadeau J. H., Sankoff D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics. 1997 Nov;147(3):1259–1266. doi: 10.1093/genetics/147.3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nornes S., Clarkson M., Mikkola I., Pedersen M., Bardsley A., Martinez J. P., Krauss S., Johansen T. Zebrafish contains two pax6 genes involved in eye development. Mech Dev. 1998 Oct;77(2):185–196. doi: 10.1016/s0925-4773(98)00156-7. [DOI] [PubMed] [Google Scholar]
  21. Nowak M. A., Boerlijst M. C., Cooke J., Smith J. M. Evolution of genetic redundancy. Nature. 1997 Jul 10;388(6638):167–171. doi: 10.1038/40618. [DOI] [PubMed] [Google Scholar]
  22. Ohta T. Simulating evolution by gene duplication. Genetics. 1987 Jan;115(1):207–213. doi: 10.1093/genetics/115.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Postlethwait J. H., Yan Y. L., Gates M. A., Horne S., Amores A., Brownlie A., Donovan A., Egan E. S., Force A., Gong Z. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998 Apr;18(4):345–349. doi: 10.1038/ng0498-345. [DOI] [PubMed] [Google Scholar]
  24. Ramos-Onsins S., Aguadé M. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics. 1998 Sep;150(1):157–171. doi: 10.1093/genetics/150.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sidow A. Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev. 1996 Dec;6(6):715–722. doi: 10.1016/s0959-437x(96)80026-8. [DOI] [PubMed] [Google Scholar]
  26. Slusarski D. C., Motzny C. K., Holmgren R. Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster. Genetics. 1995 Jan;139(1):229–240. doi: 10.1093/genetics/139.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stoltzfus A. On the possibility of constructive neutral evolution. J Mol Evol. 1999 Aug;49(2):169–181. doi: 10.1007/pl00006540. [DOI] [PubMed] [Google Scholar]
  28. Takahata N., Maruyama T. Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4521–4525. doi: 10.1073/pnas.76.9.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watterson G. A. On the time for gene silencing at duplicate Loci. Genetics. 1983 Nov;105(3):745–766. doi: 10.1093/genetics/105.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xu P. X., Zhang X., Heaney S., Yoon A., Michelson A. M., Maas R. L. Regulation of Pax6 expression is conserved between mice and flies. Development. 1999 Jan;126(2):383–395. doi: 10.1242/dev.126.2.383. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES