Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):397–412. doi: 10.1093/genetics/154.1.397

Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints.

G Künzel 1, L Korzun 1, A Meister 1
PMCID: PMC1460903  PMID: 10628998

Abstract

We have developed a new technique for the physical mapping of barley chromosomes using microdissected translocation chromosomes for PCR with sequence-tagged site primers derived from >300 genetically mapped RFLP probes. The positions of 240 translocation breakpoints were integrated as physical landmarks into linkage maps of the seven barley chromosomes. This strategy proved to be highly efficient in relating physical to genetic distances. A very heterogeneous distribution of recombination rates was found along individual chromosomes. Recombination is mainly confined to a few relatively small areas spaced by large segments in which recombination is severely suppressed. The regions of highest recombination frequency (</=1 Mb/cM) correspond to only 4.9% of the total barley genome and harbor 47.3% of the 429 markers of the studied RFLP map. The results for barley correspond well with those obtained by deletion mapping in wheat. This indicates that chromosomal regions characterized by similar recombination frequencies and marker densities are highly conserved between the genomes of barley and wheat. The findings for barley support the conclusions drawn from deletion mapping in wheat that for all plant genomes, notwithstanding their size, the marker-rich regions are all of similar gene density and recombination activity and, therefore, should be equally accessible to map-based cloning.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
  2. Busch W., Martin R., Herrmann R. G. Sensitivity enhancement of fluorescence in situ hybridization on plant chromosomes. Chromosome Res. 1994 Jan;2(1):15–20. doi: 10.1007/BF01539448. [DOI] [PubMed] [Google Scholar]
  3. Civardi L., Xia Y., Edwards K. J., Schnable P. S., Nikolau B. J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8268–8272. doi: 10.1073/pnas.91.17.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeScenzo R. A., Wise R. P. Variation in the ratio of physical to genetic distance in intervals adjacent to the Mla locus on barley chromosome 1H. Mol Gen Genet. 1996 Jun 24;251(4):472–482. doi: 10.1007/BF02172376. [DOI] [PubMed] [Google Scholar]
  5. Deynze A. E., Nelson J. C., Sorrells M. E., McCouch S. R., Dubcovsky J., Dvorák J., Gill K. S., Gill B. S., Lagudah E. S., Appels R. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome. 1995 Feb;38(1):45–59. doi: 10.1139/g95-006. [DOI] [PubMed] [Google Scholar]
  6. Dubcovsky J., Luo M. C., Zhong G. Y., Bransteitter R., Desai A., Kilian A., Kleinhofs A., Dvorák J. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics. 1996 Jun;143(2):983–999. doi: 10.1093/genetics/143.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dvorák J., Chen K. C. Distribution of Nonstructural Variation between Wheat Cultivars along Chromosome Arm 6Bp: Evidence from the Linkage Map and Physical Map of the Arm. Genetics. 1984 Feb;106(2):325–333. doi: 10.1093/genetics/106.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erpelding J. E., Blake N. K., Blake T. K., Talbert L. E. Transfer of sequence tagged site PCR markers between wheat and barley. Genome. 1996 Aug;39(4):802–810. doi: 10.1139/g96-101. [DOI] [PubMed] [Google Scholar]
  9. Fukui K., Kamisugi Y., Sakai F. Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome. 1994 Feb;37(1):105–111. doi: 10.1139/g94-013. [DOI] [PubMed] [Google Scholar]
  10. Gill K. S., Gill B. S., Endo T. R., Boyko E. V. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics. 1996 Jun;143(2):1001–1012. doi: 10.1093/genetics/143.2.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gill K. S., Gill B. S., Endo T. R., Mukai Y. Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics. 1993 Aug;134(4):1231–1236. doi: 10.1093/genetics/134.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gill K. S., Gill B. S., Endo T. R., Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996 Dec;144(4):1883–1891. doi: 10.1093/genetics/144.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hohmann U., Endo T. R., Gill K. S., Gill B. S. Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet. 1994 Dec 1;245(5):644–653. doi: 10.1007/BF00282228. [DOI] [PubMed] [Google Scholar]
  14. Kota R. S., Gill K. S., Gill B. S., Endo T. R. A cytogenetically based physical map of chromosome 1B in common wheat. Genome. 1993 Jun;36(3):548–554. doi: 10.1139/g93-075. [DOI] [PubMed] [Google Scholar]
  15. Lahaye T., Shirasu K., Schulze-Lefert P. Chromosome landing at the barley Rar1 locus. Mol Gen Genet. 1998 Oct;260(1):92–101. doi: 10.1007/s004380050874. [DOI] [PubMed] [Google Scholar]
  16. Leitch I. J., Heslop-Harrison J. S. Physical mapping of four sites of 5S rDNA sequences and one site of the &alpha;-amylase-2 gene in barley (Hordeum vulgare). Genome. 1993 Jun;36(3):517–523. doi: 10.1139/g93-071. [DOI] [PubMed] [Google Scholar]
  17. Michalek W., Künzel G., Graner A. Sequence analysis and gene identification in a set of mapped RFLP markers in barley (Hordeum vulgare). Genome. 1999 Oct;42(5):849–853. doi: 10.1139/g99-036. [DOI] [PubMed] [Google Scholar]
  18. Nelson J. C., Deynze A. E., Sorrells M. E., Autrique E., Lu Y. H., Merlino M., Atkinson M., Leroy P. Molecular mapping of wheat. Homoeologous group 2. Genome. 1995 Jun;38(3):516–524. doi: 10.1139/g95-067. [DOI] [PubMed] [Google Scholar]
  19. Nelson J. C., Deynze A. E., Sorrells M. E., Autrique E., Lu Y. H., Negre S., Bernard M., Leroy P. Molecular mapping of wheat. Homoeologous group 3. Genome. 1995 Jun;38(3):525–533. doi: 10.1139/g95-068. [DOI] [PubMed] [Google Scholar]
  20. Schnable P. S., Hsia A. P., Nikolau B. J. Genetic recombination in plants. Curr Opin Plant Biol. 1998 Apr;1(2):123–129. doi: 10.1016/s1369-5266(98)80013-7. [DOI] [PubMed] [Google Scholar]
  21. Segal G., Sarfatti M., Schaffer M. A., Ori N., Zamir D., Fluhr R. Correlation of genetic and physical structure in the region surrounding the I2 Fusarium oxysporum resistance locus in tomato. Mol Gen Genet. 1992 Jan;231(2):179–185. doi: 10.1007/BF00279789. [DOI] [PubMed] [Google Scholar]
  22. Sorokin A., Marthe F., Houben A., Pich U., Graner A., Künzel G. Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome. 1994 Aug;37(4):550–555. doi: 10.1139/g94-078. [DOI] [PubMed] [Google Scholar]
  23. Tanksley S. D., Ganal M. W., Martin G. B. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 1995 Feb;11(2):63–68. doi: 10.1016/s0168-9525(00)88999-4. [DOI] [PubMed] [Google Scholar]
  24. Werner J. E., Endo T. R., Gill B. S. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11307–11311. doi: 10.1073/pnas.89.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang H. B., Martin G. B., Tanksley S. D., Wing R. A. Map-based cloning in crop plants: tomato as a model system II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Mol Gen Genet. 1994 Sep 28;244(6):613–621. doi: 10.1007/BF00282751. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES