Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):229–236. doi: 10.1093/genetics/154.1.229

Sex-ratio meiotic drive in Drosophila simulans is related to equational nondisjunction of the Y chromosome.

M Cazemajor 1, D Joly 1, C Montchamp-Moreau 1
PMCID: PMC1460905  PMID: 10628983

Abstract

The sex-ratio trait, an example of naturally occurring X-linked meiotic drive, has been reported in a dozen Drosophila species. Males carrying a sex-ratio X chromosome produce an excess of female offspring caused by a deficiency of Y-bearing sperm. In Drosophila simulans, such males produce approximately 70-90% female offspring, and 15-30% of the male offspring are sterile. Here, we investigate the cytological basis of the drive in this species. We show that the sex-ratio trait is associated with nondisjunction of Y chromatids in meiosis II. Fluorescence in situ hybridization (FISH) using sex-chromosome-specific probes provides direct evidence that the drive is caused by the failure of the resulting spermatids to develop into functional sperm. XYY progeny were not observed, indicating that few or no YY spermatids escape failure. The recovery of XO males among the progeny of sex-ratio males shows that some nullo-XY spermatids become functional sperm and likely explains the male sterility. A review of the cytological data in other species shows that aberrant behavior of the Y chromosome may be a common basis of sex-ratio meiotic drive in Drosophila and the signal that triggers differential spermiogenesis failure.

Full Text

The Full Text of this article is available as a PDF (205.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault J. G., Rieder C. L. Meiosis in Drosophila males. I. The question of separate conjunctive mechanisms for the XY and autosomal bivalents. Chromosoma. 1994 Sep;103(5):352–356. doi: 10.1007/BF00417883. [DOI] [PubMed] [Google Scholar]
  2. Belmont A. S., Braunfeld M. B., Sedat J. W., Agard D. A. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma. 1989 Aug;98(2):129–143. doi: 10.1007/BF00291049. [DOI] [PubMed] [Google Scholar]
  3. Bickel S. E., Orr-Weaver T. L. Holding chromatids together to ensure they go their separate ways. Bioessays. 1996 Apr;18(4):293–300. doi: 10.1002/bies.950180407. [DOI] [PubMed] [Google Scholar]
  4. Cazemajor M., Landré C., Montchamp-Moreau C. The sex-ratio trait in Drosophila simulans: genetic analysis of distortion and suppression. Genetics. 1997 Oct;147(2):635–642. doi: 10.1093/genetics/147.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cobbs G., Jewell L., Gordon L. Male-sex-ratio trait in Drosophila pseudoobscura: frequency of autosomal aneuploid sperm. Genetics. 1991 Feb;127(2):381–390. doi: 10.1093/genetics/127.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dernburg A. F., Sedat J. W. Mapping three-dimensional chromosome architecture in situ. Methods Cell Biol. 1998;53:187–233. doi: 10.1016/s0091-679x(08)60880-8. [DOI] [PubMed] [Google Scholar]
  7. ERICKSON J. MEIOTIC DRIVE IN DROSOPHILA INVOLVING CHROMOSOME BREAKAGE. Genetics. 1965 Apr;51:555–571. doi: 10.1093/genetics/51.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gatti M., Bonaccorsi S., Pimpinelli S. Looking at Drosophila mitotic chromosomes. Methods Cell Biol. 1994;44:371–391. doi: 10.1016/s0091-679x(08)60924-3. [DOI] [PubMed] [Google Scholar]
  9. Hauschteck-Jungen E., Jungen H., Müller M. Karyotyp und Meiose bei wold- und sex ratio-Männchen von Drosophila subobscura. Rev Suisse Zool. 1972;(Suppl):297–305. [PubMed] [Google Scholar]
  10. Karpen G. H., Schaefer J. E., Laird C. D. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 1988 Dec;2(12B):1745–1763. doi: 10.1101/gad.2.12b.1745. [DOI] [PubMed] [Google Scholar]
  11. Lifschytz E., Hareven D. Gene expression and the control of spermatid morphogenesis in Drosophila melanogaster. Dev Biol. 1977 Jul 15;58(2):276–294. doi: 10.1016/0012-1606(77)90092-6. [DOI] [PubMed] [Google Scholar]
  12. Lohe A. R., Roberts P. A. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics. 1990 Jun;125(2):399–406. doi: 10.1093/genetics/125.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lyttle T. W. Segregation distorters. Annu Rev Genet. 1991;25:511–557. doi: 10.1146/annurev.ge.25.120191.002455. [DOI] [PubMed] [Google Scholar]
  14. Mange E. J. Temperature sensitivity of segregation-distortion in Drosophila melanogaster. Genetics. 1968 Mar;58(3):399–413. doi: 10.1093/genetics/58.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKee B. D. Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis in male Drosophila. Curr Top Dev Biol. 1998;37:77–115. doi: 10.1016/s0070-2153(08)60172-6. [DOI] [PubMed] [Google Scholar]
  16. McKee B. Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males. Genetics. 1984 Mar;106(3):403–422. doi: 10.1093/genetics/106.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NOVITSKI E., PEACOCK W. J., ENGEL J. CYTOLOGICAL BASIS OF "SEX RATIO" IN DROSOPHILA PSEUDOOBSCURA. Science. 1965 Apr 23;148(3669):516–517. doi: 10.1126/science.148.3669.516. [DOI] [PubMed] [Google Scholar]
  18. Policansky D., Ellison J. "Sex ratio" in Drosophila pseudoobscura: spermiogenic failure. Science. 1970 Aug 28;169(3948):888–889. doi: 10.1126/science.169.3948.888. [DOI] [PubMed] [Google Scholar]
  19. Rousseaux S., Chevret E. In-vitro decondensation of human spermatozoa for fluorescence in-situ hybridization. Hum Reprod. 1995 Aug;10(8):2209–2213. [PubMed] [Google Scholar]
  20. Silver L. M., Olds-Clarke P. Transmission ratio distortion of mouse t haplotypes is not a consequence of wild-type sperm degeneration. Dev Biol. 1984 Sep;105(1):250–252. doi: 10.1016/0012-1606(84)90282-3. [DOI] [PubMed] [Google Scholar]
  21. Stalker H D. The Genetic Systems Modifying Meiotic Drive in Drosophila Paramelanica. Genetics. 1961 Feb;46(2):177–202. doi: 10.1093/genetics/46.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sweeny T. L., Barr A. R. Sex Ratio Distortion Caused by Meiotic Drive in a Mosquito, Culex pipiens L. Genetics. 1978 Mar;88(3):427–446. doi: 10.1093/genetics/88.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto M. T. Inviability of hybrids between D. melanogaster and D. simulans results from the absence of simulans X not the presence of simulans Y chromosome. Genetica. 1992;87(3):151–158. doi: 10.1007/BF00240554. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES