Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):247–257. doi: 10.1093/genetics/154.1.247

Biochemical defects of mutant nudel alleles causing early developmental arrest or dorsalization of the Drosophila embryo.

E K LeMosy 1, C L Leclerc 1, C Hashimoto 1
PMCID: PMC1460912  PMID: 10628985

Abstract

The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles.

Full Text

The Full Text of this article is available as a PDF (372.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. V. Pinning down positional information: dorsal-ventral polarity in the Drosophila embryo. Cell. 1998 Nov 13;95(4):439–442. doi: 10.1016/s0092-8674(00)81610-4. [DOI] [PubMed] [Google Scholar]
  2. Bertina R. M., van der Linden I. K., Mannucci P. M., Reinalda-Poot H. H., Cupers R., Poort S. R., Reitsma P. H. Mutations in hemophilia Bm occur at the Arg180-Val activation site or in the catalytic domain of factor IX. J Biol Chem. 1990 Jul 5;265(19):10876–10883. [PubMed] [Google Scholar]
  3. Bourin M. C., Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J. 1993 Jan 15;289(Pt 2):313–330. doi: 10.1042/bj2890313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chasan R., Anderson K. V. The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell. 1989 Feb 10;56(3):391–400. doi: 10.1016/0092-8674(89)90242-0. [DOI] [PubMed] [Google Scholar]
  5. DeLotto R., Spierer P. A gene required for the specification of dorsal-ventral pattern in Drosophila appears to encode a serine protease. Nature. 1986 Oct 23;323(6090):688–692. doi: 10.1038/323688a0. [DOI] [PubMed] [Google Scholar]
  6. Fargnoli J., Waring G. L. Identification of vitelline membrane proteins in Drosophila melanogaster. Dev Biol. 1982 Aug;92(2):306–314. doi: 10.1016/0012-1606(82)90177-4. [DOI] [PubMed] [Google Scholar]
  7. Furie B., Bing D. H., Feldmann R. J., Robison D. J., Burnier J. P., Furie B. C. Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteases. J Biol Chem. 1982 Apr 10;257(7):3875–3882. [PubMed] [Google Scholar]
  8. Giannelli F., Green P. M., Sommer S. S., Poon M., Ludwig M., Schwaab R., Reitsma P. H., Goossens M., Yoshioka A., Figueiredo M. S. Haemophilia B: database of point mutations and short additions and deletions--eighth edition. Nucleic Acids Res. 1998 Jan 1;26(1):265–268. doi: 10.1093/nar/26.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greer J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins. 1990;7(4):317–334. doi: 10.1002/prot.340070404. [DOI] [PubMed] [Google Scholar]
  10. Hong C. C., Hashimoto C. An unusual mosaic protein with a protease domain, encoded by the nudel gene, is involved in defining embryonic dorsoventral polarity in Drosophila. Cell. 1995 Sep 8;82(5):785–794. doi: 10.1016/0092-8674(95)90475-1. [DOI] [PubMed] [Google Scholar]
  11. Hong C. C., Hashimoto C. The maternal nudel protein of Drosophila has two distinct roles important for embryogenesis. Genetics. 1996 Aug;143(4):1653–1661. doi: 10.1093/genetics/143.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konsolaki M., Schüpbach T. windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum. Genes Dev. 1998 Jan 1;12(1):120–131. doi: 10.1101/gad.12.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lamandé S. R., Sigalas E., Pan T. C., Chu M. L., Dziadek M., Timpl R., Bateman J. F. The role of the alpha3(VI) chain in collagen VI assembly. Expression of an alpha3(VI) chain lacking N-terminal modules N10-N7 restores collagen VI assembly, secretion, and matrix deposition in an alpha3(VI)-deficient cell line. J Biol Chem. 1998 Mar 27;273(13):7423–7430. doi: 10.1074/jbc.273.13.7423. [DOI] [PubMed] [Google Scholar]
  14. LeMosy E. K., Hong C. C., Hashimoto C. Signal transduction by a protease cascade. Trends Cell Biol. 1999 Mar;9(3):102–107. doi: 10.1016/s0962-8924(98)01494-9. [DOI] [PubMed] [Google Scholar]
  15. LeMosy E. K., Kemler D., Hashimoto C. Role of Nudel protease activation in triggering dorsoventral polarization of the Drosophila embryo. Development. 1998 Oct;125(20):4045–4053. doi: 10.1242/dev.125.20.4045. [DOI] [PubMed] [Google Scholar]
  16. Lu D., Yuan X., Zheng X., Sadler J. E. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. J Biol Chem. 1997 Dec 12;272(50):31293–31300. doi: 10.1074/jbc.272.50.31293. [DOI] [PubMed] [Google Scholar]
  17. Morisato D., Anderson K. V. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet. 1995;29:371–399. doi: 10.1146/annurev.ge.29.120195.002103. [DOI] [PubMed] [Google Scholar]
  18. Nilson L. A., Schüpbach T. Localized requirements for windbeutel and pipe reveal a dorsoventral prepattern within the follicular epithelium of the Drosophila ovary. Cell. 1998 Apr 17;93(2):253–262. doi: 10.1016/s0092-8674(00)81576-7. [DOI] [PubMed] [Google Scholar]
  19. Noguerón M. I., Waring G. L. Regulated processing of dec-1 eggshell proteins in Drosophila. Dev Biol. 1995 Nov;172(1):272–279. doi: 10.1006/dbio.1995.0022. [DOI] [PubMed] [Google Scholar]
  20. Osterud B., Kasper C. K., Lavine K. K., Prodanos C., Rapaport S. I. Purification and properties of an abnormal blood coagulation factor IX (factor IXBm)/kinetics of its inhibition of factor X activation by factor VII and bovine tissue factor. Thromb Haemost. 1981 Feb 23;45(1):55–59. [PubMed] [Google Scholar]
  21. Pascucci T., Perrino J., Mahowald A. P., Waring G. L. Eggshell assembly in Drosophila: processing and localization of vitelline membrane and chorion proteins. Dev Biol. 1996 Aug 1;177(2):590–598. doi: 10.1006/dbio.1996.0188. [DOI] [PubMed] [Google Scholar]
  22. Prieto A. L., Edelman G. M., Crossin K. L. Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10154–10158. doi: 10.1073/pnas.90.21.10154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715. doi: 10.1146/annurev.cellbio.12.1.697. [DOI] [PubMed] [Google Scholar]
  24. Sen J., Goltz J. S., Stevens L., Stein D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell. 1998 Nov 13;95(4):471–481. doi: 10.1016/s0092-8674(00)81615-3. [DOI] [PubMed] [Google Scholar]
  25. Sottile J., Wiley S. Assembly of amino-terminal fibronectin dimers into the extracellular matrix. J Biol Chem. 1994 Jun 24;269(25):17192–17198. [PubMed] [Google Scholar]
  26. Spitzer S. G., Pendurthi U. R., Kasper C. K., Bajaj S. P. Molecular defect in factor IXBm Lake Elsinore. Substitution of Ala390 by Val in the catalytic domain. J Biol Chem. 1988 Aug 5;263(22):10545–10548. [PubMed] [Google Scholar]
  27. Verheyen E., Cooley L. Looking at oogenesis. Methods Cell Biol. 1994;44:545–561. [PubMed] [Google Scholar]
  28. Waring G. L., DiOrio J. P., Hennen S. Isolation of germ line-dependent female-sterile mutation that affects yolk specific sequestration and chorion formation in Drosophila. Dev Biol. 1983 Dec;100(2):452–463. doi: 10.1016/0012-1606(83)90238-5. [DOI] [PubMed] [Google Scholar]
  29. West C. M. Current ideas on the significance of protein glycosylation. Mol Cell Biochem. 1986 Nov-Dec;72(1-2):3–20. doi: 10.1007/BF00230632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Willnow T. E., Orth K., Herz J. Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related protein. J Biol Chem. 1994 Jun 3;269(22):15827–15832. [PubMed] [Google Scholar]
  31. Yamamoto T., Davis C. G., Brown M. S., Schneider W. J., Casey M. L., Goldstein J. L., Russell D. W. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov;39(1):27–38. doi: 10.1016/0092-8674(84)90188-0. [DOI] [PubMed] [Google Scholar]
  32. Zur M., Nemerson Y. The esterase activity of coagulation factor VII. Evidence for intrinsic activity of the zymogen. J Biol Chem. 1978 Apr 10;253(7):2203–2209. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES